
User guide for Concordia

A MATLAB code for gene flow simulations

Developed by:
Hein van Heck and Maarten van Strien

Document updated: May 14, 2014

Cover image: ”The Dutch VOC ship de Concordia in a calm sea, a flagship and a small
ship in the distance” by Cornelis Bouwmeester.

Contents

I Concordia 7

1 Background and introduction 9

1.1 Idea and purpose of Concordia . 9

1.2 Running Concordia . 9

1.3 Getting started with MATLAB . 10

1.4 Structure of Concordia: Naming conventions 10

1.4.1 Concordia . 10

1.4.2 Physical naming . 11

1.4.3 Numerical naming: Parameters and matrixes 11

1.5 Structure of Concordia: Files and functions 11

2 The four steps of a calculation 13

2.1 Reading parameters . 13

2.1.1 Input parameters . 13

2.2 Initialisation . 13

2.2.1 The landscape / habitat / demes . 15

2.2.2 The migration function . 15

2.2.3 Failed migrations . 18

2.2.4 Blocking . 19

2.2.5 Organise accumulated migration probabilities 19

2.2.6 Determine the portion of habitat on all paths 20

2.2.7 Determine the shortest stepwise distance between demes 20

2.2.8 Find the least cost paths between demes 20

2.3 Time stepping . 20

2.3.1 Migration . 21

2.3.2 Reproduction . 21

2.3.3 Generation replacement . 21

2.3.4 Time dependent statistics . 22

2.3.5 Intermediate plots . 22

2.4 Finalising . 22

3

4 CONTENTS

2.4.1 Output: time.txt files . 22

2.4.2 Output: fdh.txt files . 22

2.4.3 Output: results.txt files . 23

2.4.4 Output: .mat files . 23

2.4.5 Plotting . 23

2.4.6 Checks and warnings . 23

3 Main Matrixes 25

4 Assumptions and simplifications 29

4.1 Simplifications . 29

4.2 Assumptions . 29

5 Performance 31

5.1 The speed of Concordia . 31

II Benchmark and analytical solutions 33

1 Intro 35

2 Fixation speed: Reproduction without migration 37

3 Pure mixing: Migration without reproduction 39

3.1 Pure mixing: Asymptotic value . 39

3.2 Pure mixing: Predicting evolution and time till perfectly mixed 40

3.2.1 The standard deviation for Time=0 41

3.2.2 Prediction for Time=Infinite . 41

3.2.3 Form of the equation to find . 41

3.2.4 The eventual equation . 42

3.2.5 Show that the equation fits T=Infinity 43

3.2.6 Show that the equation fits T=0 . 43

3.2.7 Find an equation for c(Time) . 44

3.2.8 Write the equation to a final form 44

3.3 Pure mixing: Predicting Fst-global . 44

4 Reproduction plus migration: 1 way migration 47

4.1 Reproduction plus migration: 2 demes, 1 sending, 1 receiving 47

4.2 Reproduction plus migration: several demes receiving, 1 sending 49

5 Reproduction plus migration: 2 way migration 53

5.1 Reproduction plus migration: 2 demes, 2 sending, 2 receiving 53

CONTENTS 5

III Miscellanious 55

1 Contact and reference 57
1.1 Contact . 57
1.2 Reference . 57

6 CONTENTS

Part I

Concordia

7

Chapter 1

Background and introduction

1.1 Idea and purpose of Concordia

Concordia is a code developed to model the spread of DNA in grasshopper demes. The code
is written in MATLAB and works on any system provided MATLAB is installed. Concordia
could be classified as an agent based model projected on a static cellular landscape. The
agents/individuals are grouped in demes/colonies where the ease/probability of migration
from one deme to an other is dictated by the cellular landscape. The information that the
agents cary with them is their DNA, their present location and the locations of their birth.
The information stored on the cellular landscape is the location of suitable habitat.

For big problems calculation time increases but the code is stable till fairly large prob-
lem sizes. Millions of individuals per generation are possible to model for hundreds of
generations, on a single laptop.

1.2 Running Concordia

A calculation can be performed by putting all the .m-files in one directory and opening
MATLAB in that directory. The code is controlled via the main MATLAB-file ”Con-
cordia.m”. Performing a calculation can be done by typing ”Concordia” in the MATLAB
command line, or by opening the file Concordia.m in MATLAB and pressing ”RUN” (Green
play button).

The setup of the calculation is controlled by the input parameters which are save at
the top of Concordia.m The input parameter values can be changed as much as the user
likes without changing the main code.

9

10 CHAPTER 1. BACKGROUND AND INTRODUCTION

1.3 Getting started with MATLAB

A new Matlab user should get familiar with the main commands by typing them in the
Matlab command line and see what they do. Typing ”help ***” in Matlab gives expla-
nations and help on whatever is typed in stead of ***. For example typing ”help fprintf”
gives information on how to use ”fprintf”. Free MATLAB-tutorials can be found at many
locations on the internet. Some examples are:

• The mathworks website: www.mathworks.com

• YouTube has many videos: MATLAB basics - intro - course for beginners etc..

• http://www.math.ufl.edu/help/matlab-tutorial/

A quick overview of the most commonly used Matlab-commands is given to get a quick idea
of how the code is working. Concordia is saved into several files which use these commands.

• Commands via %. All text after a % symbol are not seen by the code.

• ; at the end of a line to suppress printing to the screen.

• parameters via: x=10.

• vectors via x(1:10)=1.

• matrices as: x(1:3,1:4)=2.

• vector/matrix multiplications as: z=x(1,:)*y(:) or z=times(x(1,:),y(:))

• do-loops.

• while-loops.

• if-elseif-else-end-statements.

• print statements via: fprintf.

• random numbers via rand(2) or random integers via randi(10).

• tic-toc timings, which work as a stopwatch to track the time spend on certain parts
of the code.

1.4 Structure of Concordia: Naming conventions

1.4.1 Concordia

Concordia is named after the sailing ship ’Concordia’ that was built and owned by the
Dutch VOC (East Indian Compagny). The ship Concordia was built in 1696 in Delft and
last seen in 1708 after which it was registered as being lost.

1.5. STRUCTURE OF CONCORDIA: FILES AND FUNCTIONS 11

1.4.2 Physical naming

DNA: a substance that carries genetic information in the cells of plants and animals
(http://www.merriam-webster.com)
Allele: any of the alternative forms of a gene that may occur at a given position in a
chromosome (http://www.merriam-webster.com)
Deme: a group / colony of interbreeding individuals.

1.4.3 Numerical naming: Parameters and matrixes

The names of parameters and matrixes in Concordia are quite long in order to keep them
as self explanatory as possible. All names consist of letters only. Parameters and individual
numbers start with lower case letter while all matrixes start with a upper case letter. When
names consist of several words all words after the first are written with a capital. Such as:
’numberOfMigrators’ (which is an integer) or ’DemeLocations’ (which is a matrix).

1.5 Structure of Concordia: Files and functions

To call/execute a function or subfunction the syntax is as follows. To use it we first need
to define the arguments ”aNumber” and ”anotherNumber”
1: aNumber=3; anotherNumber=5;
2: [sum]=add(aNumber,anotherNumber);
3: fprintf(’Sum = %2.1f’ ,sum)
would print ”Sum = 8.0” to the screen. Provided a function ”add” is a in file ”add.m” in
the same directory, which looks like:
1. function [result] = add (i1,i2)
2. result=i1+i2;
3. end

The complete code is distributed over several files. The main file is Concordia.m. When
running the code, the program in this file is executed which will call routines/functions in
other files from here.

In Concordia, different functions are saved in different files. Some functions may have
sub-functions which are saved at the end of that file and are used only within that file.
Concordia.m is the main file which holds calls to other files but none calls to Concordia.m
or any other file. Flow control is always from the main file to one other and directly back
to the main file. This structure makes Concordia extremely modular. Each file can be
studied/expanded/substituted independently without affecting the rest of the code. The
contents and purpose of each file of Concordia are discussed one by one in chapter 2.

12 CHAPTER 1. BACKGROUND AND INTRODUCTION

Chapter 2

The four steps of a calculation

An overview of the code is given here, for more details see the commands added inside the
files of interest. After reading the input parameters some initialisation is done, such as
defining the appropriated sizes of some matrixes and setting the time counters to zero.

2.1 Reading parameters

Parameters are read from the main file Concordia.m. They can be saved in .mat files from
which they can be loaded again for future calculations.

2.1.1 Input parameters

The input parameters are set at the top of the file Concordia.m. An overview is given in
the tables below.

2.2 Initialisation

Further initialisation is done in 5 steps. The main purpose of these steps is to create the ma-
trix MigrationProb which holds the probabilities to migrate from one deme to all others. In
the current version of the code (version 1.0, 14 October 2013) several migration probability
functions are implemented. A normal Gaussian and various forms of leptokurtic migration
functions can be set following Ibrahim et al. 1996. Next to that, these steps create the
matrices ”Grasshoppers, Landscape, DemeLocations, MigrationDistance, DemeAngles and
Shadow”. Most of these matrices are mainly used to create/update MigrationProb and are
useful in plotting routines. Apart from Grasshoppers, which is used extensively in the rest
of the Concordia.

13

14 CHAPTER 2. THE FOUR STEPS OF A CALCULATION

Parameter Typical value Options and description

Parameters for the landscape, habitat and DNA setup

landscapeNx 100 The size of the landscape in X-direction.
Also used as length scale for the rest of the code.

landscapeNy 100 Same in Y-direction.
demeGeometry 1 Flag for what setup to use for the deme-locations.

Demes are only placed at ”integer-coordinate numbers”.
(Centre of cell for later treatment.)
• 0; Random placement of demes inside the habitat.
• 1; (Multiple-) Line set up.
In this case, demeTotal and demeXDirection have to match
demeYDirection. When demeTotal and demeXDirection are
the same just one line of evenly spaced demes is produced.
When demeTotal = 4 ∗ demeXDirection, 4 lines of demes, etc.
• 2; Equal ’cell-skipping-placement’ inside the habitat.

habitatForm 6 Shape of the habitat. Demes can only be placed inside the habitat.
• 0; All domain is habitat.
• 0-40; Neutral landscapes.
• 101; Quadrants.
• 102; 4 corners (islands).
• 103; Big, connected rivers.
• 104; Several big, not connected rivers.
• 105; Connected rivers.
• 106; Circle.
• 107; Horizontal cross.
• 108; Double cross. (amplifier for mutation spread).
• 109; Imitation of Maarten’s area in Switzerland.
• 110; Lines.

demeXDirection 10 Number of demes in X-direction (used when demeGeometry = 1).
demeTotal 100 Total number of demes.
demeSize 100 Number of individuals in a deme.
InitDNA 2 Flag for how to initialise allele distribution.

• 1; All start as homozygous (2 of the same alleles)
Where the allele-number equals the deme-number.
So all individuals starting in deme 5 have DNA 5-5.
• 2; Random.
Each individual get two alleles allocated at random,
varying from 1 to ”maxAllel”
• 3; All start homozygous (2 of the same allele).
Where only 1 allele-number is allowed in each deem and the
allele-number for each deme is allocated at random (from 1:maxAllel)

maxAllel 10 Total different values for alleles.
Not used when initDNA=1.

nLoci Number of loci to track.

2.2. INITIALISATION 15

Parameter Typical value Options and description

Parameters for reproduction

noChildren 0 When 1, just 1 generation of grasshoppers is moved around.
When 1, the calls to reproduce and die are skipped.

numberOfOffspring 20 Number of eggs that two parents produce.

2.2.1 The landscape / habitat / demes

The function ”habitat”, at the end of the file ”initialise.m”, builds the habitat. In the
future the habitat could be used for various things but at the moment it is only used to
dictate the possible locations of demes. The habitat is then imposed on the landscape
which is used further on in the code. Which geometry the habitat takes is determined
by the input parameter ”habitatForm”. Any geometry could be added to mimic a certain
landscape.

(Initialise.m) Setting up the landscape, including the locations of the demes and indi-
vidual grasshoppers. This function produces the matrixes ”Grasshoppers, Landscape and
DemeLocations”.

• GrassHoppers holds location and DNA-info for each individual, this matrix is not
changed until time stepping has begun.

• Landscape holds the meaning of each cell on the landscape. Each cell gets either the
value 0, 1 or 2. (where 0=habitat, 1=deme and 2=not-habitat). Once created, this
matrix is never changed.

• DemeLocations holds the x-y-coordinate of each cell that holds a deem, plus the
number of the deme. Strictly, this matrix is not needed since the information is also
stored in Landscape. Loops over all demes (later in the code) are easier to write
when this matrix exists.

2.2.2 The migration function

(MigrationFunction.m) Setting up the migration function and determining the distances
and directions (angles) between all demes. This function produces the matrixes ”Migra-
tionProb, MigrationDistance and DemeAngles”.

MigrationProb Holds the probabilities to migrate from each deme to each other deme.
The probability to move from deme 2 to 3 is stored at (2,3), later translated to an accu-
mulated sense. MigrationProb is build over different files-functions where it is updated to
include the effects of blocking, failing, accumulate etc. Once time stepping has begun, this

16 CHAPTER 2. THE FOUR STEPS OF A CALCULATION

Parameter Typical value Options and description

Parameters for migration

migrationCode 1 Code to define migration mode.
• 1; Equal probability for all except the one where
the individual departs from (which is 0).
• 2; Probability depends linearly on distances between demes.
• 3; Step function.
• 4; Leptokurtic (or normal).

normalMigrationVar1 5 Variance used for normal-pdf (migrationCode = 4).
Ibrahim et al. (1996) used 5.

normalMigrationVar2 40 Variance used for second normal-pdf of the leptokurtic law.
alphaLeptoKurtic 0.05 Ratio of the two normal-pdf for leptoKurtic law.
resNormMigrationF 0.1 Resolution of normal migration functions.

An exact solution is calculated at each distance per cell.
Set to 0.1 for a solution of the normal pdf at 10 locations
per cell in X, and the same amount in Y-direction.
Keep small, much lower than 1.

coeffLinearMigration 1 Used for linear relation to distance (migrationCode = 2).
Multiplied with the distances to set the probabilities.
(1 is neutral, 10 makes it less likely to migrate far).

maxMigrationDistance 0.2 Used to set the limit of the step function (migrationCode=4).
Scaled to the length of the landscape (landscapeNx).
0.2 means that all demes within 20% of the size of the
landscape have equal probability to be reached, all other 0.

migrationPropability 0.01 Chance that each individual has to migrate (each time step).
scaleMigrProb 0 1=yes, 0=no. Normalise the probabilities to reach a deme

such that theyadd up to 1.
useMigrationFail 1 (1=yes, 0=no) For distance dependent failing.

(Die during migration.)
failExponent 2 For failed-distance law.

Used to calculate the probability of dying
during migration as function of distance to this exponent.

failCoefficient 1 For failed-distance law. Coefficient to multiply with the
probability that an individual will die during migration.

matrixEffect 0 Incorporate matrix effect in migration probability.
0 = none, 1 = inhibiting matrix, 2 = facilitating matrix.

weakness 1 If matrixEffect = 1 or 2, the higher this effect is, the weaker is
the inhibiting or facilitative effect of the matrix.
Do not set to 0, 0.1 is very strong effect.

blockingMode 1 Code to set the blocking mode.
• 0; Demes do not block migration paths, i.e. all demes
can be reached. (provided the migrationCode allows it).
• 1; Demes block migration paths for demes located
behind them.”captureRadius” controls the width of the
”shadow-zone” in which demes can not be reached.

captureRadius 1.5 Used for blockingMode=1. length scale: LandscapeNx.
When set very small (10−10 or so) only demes in a
straight line behind the blocking deme will be blocked.

2.2. INITIALISATION 17

Parameter Typical value Options and description

Parameters for output

calculateLCPaths 0 (1=yes) Switch for calling dijkstaHek to get least-costs-paths
onlyOneLeastCost 1 (1=yes) Calculate only least-cost-paths from one starting deme.
weightHabitat 1 weight to step to a habitatcell (dijkstra).
weightNonHabitat 10 weight to step to a non-habitatcell (dijkstra).
calcHabnonHab 1 (1=yes) Switch to skip timeconsuming part.
propHabOnlyDirect 0 (1=yes, 0=no) Used for proportion of habitat i n paths.
straightPathCalc 2 Version to calculate cells in a straight-line path between demes.

0=exact distance-in-cell version. 1=loops, 2=matrix-version.
calculateTimeDiagnostics 0 Calculate statistics every time step (1=yes).
calculateRawFst 1 1 = Save the raw pairwise Fst values together with

the distance and proportion of habitat to a table.
plotResults 11 Best to leave 0 or 11 and plot things afterwards.
maxTimeSteps 100 Length of the calculation.
plotIntermFst 0 Switch for creating Fst graphs during calculation.
saveSteps [25,50,75] Time steps at which intermediate plots will be created.
distanceCut 0.5 non-Dim distance clustering for output.
outputFileStem ’Test’ name for the output files.
outputFileDir ’+Output’ Directory to save output.
saveMatFiles 0 save .mat files with all parameters for each run in the

output directory (several MB per file).
copyMatFiles 0 save a copy to the current dir (1=yes)
aveLastSteps 5 Save average values over the last X steps (results.txt).

Parameter Typical value Options and description

Parameters for multiple calculations

numberOfRuns1 3 Repeated calculations including initialisation.
allAlphaRun 0 (1=yes) Repeat calc. for multiple values of alphaLeptoKurtic
multipleAlpha (0.1:0.1:1) Values for alphaLeptoKurtic.
testCase 0 Use for testing simple setups via testCaseSetup.m (0 means not use it).

18 CHAPTER 2. THE FOUR STEPS OF A CALCULATION

matrix is not changed anymore. It is used every time step, in migration.m.

MigrationDistance holds the distance between all combinations of 2 demes. The
distance is made non-dimensional by scaling to the lengthscale ”LandscapeNx”. Once cre-
ated, this matrix is not changed anymore. The matrix is used in later initialisation steps.
migrationFail.m uses it to determine the probability to fail (die) during migration. block-
ing.m uses it to find which demes are blocking others. During time stepping, this matrix
is not used apart from for plotting intermediate results.

DemeAngles holds the angles (directions) of the migration paths in degrees. 0 is in
the positive x-direction, the angle increases anti-clockwise till 360 degree. The angle of
the path from deme 2 to deme 3 is stored in DemeAngles(2,3). Once created, this matrix
is not changed anymore. During time stepping, this matrix is never used. It is used for
determining which paths are blocked by other demes (in blocking.m) and for determining
the proportion of habitat that each path covers (in higherOrderPaths.m).

2.2.3 Failed migrations

(migrationFail.m) Decrease the migration probabilities as function of deme-distances. This
function changes the values in the matrix MigrationProb. It reduces the probabilities (val-
ues in MigrationProb) based on the distance between the demes. It also creates the matrix
MigrationFail which is not used further in the code in any way, it is just send back to the
main file so that it can be inspected after each calculation.

Migration can fail for two reasons:
1. Not enough demes are close enough to be reached.
2. The individuals have a certain probability to die halfway migrating, typically increasing
with the distance between the two demes.

In Concordia we needed to include these two rules, since we want to deal with different
landscape geometries and include local deme density / direction to the landscape. It is
implemented like this: The input parameter migrationProbability sets the probability that
each individual has to start migrating (i.e.leaving it’s deme). Then, the migration-function
determines the probabilities to reach the other demes. In earlier versions of Concordia
(before June 18th) the probabilities were scaled/normalised so that the total of these
probabilities was set to 1. (in accumulateProb.m) meaning that all individuals that start a
migration reach a deme. Now (June 18th) an option is added not to use this scaling. When
not used the probabilities come directly from the migration function. I believe this is what
we should use. Having this option is equivalent to a simple implementation of a directional
spread of migrators. For example, if a deme is so remote that migrators leaving this deme
can only reach 1 other deme, the old version (with the scaling in accumulateProb.m) would

2.2. INITIALISATION 19

dictate that all individuals that start migrating would reach this one deme. In the new
version the probability that this deme is successfully reached depends on the migration
function. In all other cases the individual reaches no deme and dies while migrating. This
might be the simplest way of including a directional walk/spread provided input parameters
for the shape of the migration function are chosen properly.

When individuals fail to migrate in this way they are moved to ”deme 0” (in accumu-
lateProb.m). reproduce.m is updated to ignore (/delete) the individuals that are placed in
”deme 0”.

A switch is added to the input parameters (scaleMigrProb) to switch to scaling on and
off. It should be off (= 0) in standard cases.

- 2: useMigrationFail is one of the input parameters/switches that dictates whether or
not this is used. If it is, individuals that migrate have some probability to die half way
migrating. When used, the input parameters failExponent and failCoefficient determine
the probabilities. In the shape of probability − to − die = failCoefficient ∗ (distance −
demesfailExponent).

2.2.4 Blocking

(blocking.m) Setting up which demes block access to others, and updating the migration
probabilities. This function creates the matrix Shadow and changes the matrix Migra-
tionProb.
In this file, the probabilities in the matrix MigrationProb are set to 0 for blocked paths,
or, if demeTransparacy is not equal to 0, the probabilities for blocked paths are reduced
by (1-demeTransparacy) for each deme that blocks the path. Once created, Shadow is
not changed anymore. Shadow is used later in the code for splitting results for block-not-
blocked paths and for finding what the shortest step-wise path between all demes is (in
higherOrderPath.m)

2.2.5 Organise accumulated migration probabilities

(accumulate.m) Finalising the migration probabilities so that they can be used for time
stepping. MigrationProb is updated one final time, after this routine MigrationProb is not
changed anymore. The probabilities are accumulated so that the probability to move from
deme 1 to deme 3 is given by the difference in MigrationProb(1,3) and MigrationProb(1,2).
-so, summed row-wise towards the right.- If ”scaleMigrProb==1” the probabilities are
scaled so that they always add up to 1. So an individual that migrates will always reach a
destination in this case. During time stepping, MigrationProb is (only) used in migrate.m.

20 CHAPTER 2. THE FOUR STEPS OF A CALCULATION

2.2.6 Determine the portion of habitat on all paths

(habvsNonHab.m) Creates the matrix HabitatvsNonHabitat. Which holds the fraction of
habitat on all straight line paths. Also StraightLinePath is created here which holds full
paths (the landscape cell numbers).

Three version are implemented, separated by straightPathCalc. All versions assume
that demes are placed at the centre of a landscape cell. If propHabOnlyDirect=1, only the
non-blocked paths are included in this routine.
straightPathCalc=0 uses the oldest version in which exact distances in each landscape cell
on the paths are calculated. straightPathCalc=1 uses a much faster version in which the
landscape cells toughed by the paths are counted. The fraction of habitat cells is then
saved as the number to indicate HabitatvsNonHabitat. straightPathCalc=2 is very similar
to straightPathCalc=1 but uses faster matrix multiplications.
straightPathCalc=1 could be removed since either 0 or 2 should be used. Typically 2 is
preferred since this methods is also used for the least cost paths, calculated in leastCost-
Path.m.

2.2.7 Determine the shortest stepwise distance between demes

(higherOrderPaths.m) Calculates the shortest step-wise distance between all demes. The
routine uses the matrix Shadow and creates the matrix ShortestPath. By multiplying
Shadow with itself a matrix is obtained that holds all ”two-step-paths”. Multiplying that
again with Shadow the three-step paths etc..

This routine is only based on blocked paths, and does not deal with demes so far apart
that the migration function sets the migration probability to 0 (which is never with a
leptokurtic law but will happen with other migration laws).

2.2.8 Find the least cost paths between demes

(leastCostPath.m) Works with a Dijkstra algorithm. It finds the least cost path between
all demes, where a habitat-cell is cheap, and a non-habitat-cell is expensive to cross. (exact
prices are controlled via input parameters). The location of other demes are threated as
habitat-cells. Especially on large landscapes this routine takes up a lot of calculation time.
An option is implemented to skip this routine completely or to calculate the least coast
paths for only the middle-deme to all other demes to save calculation time.

2.3 Time stepping

Each time step is build up from 5 actions. Each action is performed in a separate file.
”tic-toc” commands are placed around each step so that the time spent in each routine

2.3. TIME STEPPING 21

can be tracked.

2.3.1 Migration

Migrate the grasshoppers: (Done in migrate.m)

Overview Each time step all individuals have some probability to migrate to an other
deme.

Detailed description:
Loops over all the individuals (maxGH) and executes 3 steps:

A: See if this individual migrates.
This is based on migrationProbability which is the same for all individuals.
B: Check if he/she makes it.
Based on the highest value in MigrationProb, which represents the accumulated probability
to succesfully migrate to all other demes. If this individual does not make it to a destination,
it is placed in ”deme 0” by setting it’s present location to 0 (in GrassHoppers). Later
routines (reproduce.m) will recognise that this individual died during migration.
C: If migration will be succesfull, determine to which deme it goes.
Based on MigrationProb. The individual’s present location is changed to the deme it
migrates to.

2.3.2 Reproduction

Create a new generation: (Done in reproduce.m)

Overview Done in three steps;
A: Find couples of parents (mom and dad).
B: Create eggs (from parents, number comes from numberOfOffspring).
C: Kill eggs and transform the survivors to new children.
Note that creating eggs and killing them (step 2b and 2c) are by far the most time con-
suming actions of the whole code. It could be replaced by a statistical method and/or
producing only surviving eggs.

2.3.3 Generation replacement

Replace the old generation by the new one: (Done in die.m)

Overview Very simple routine. The old generation is removed and replaced by the new
one. Later versions of the code might need to save information here so it is left separate.

22 CHAPTER 2. THE FOUR STEPS OF A CALCULATION

2.3.4 Time dependent statistics

Calculate statistics: (Done in statistics.m)

Overview Saves some statistics that need to be saved every time step.
A: Saves ”StaredEnd” which keeps track of the demes that moved from one deme to an-
other in this time step.
B: Calculated the average standard deviation of the number of individuals per deme started
in each deme. Mainly usefull when no children are born but might have it uses otherwise
as well.
C: Calculates the number of homozygous individuals (per deme when combined with
Grasshoppers).
D: Calculate Hs, Ht and Fst.
E: Calculate Spearman’s rho (rank coefficient) for various diagnostics versus Fst.

2.3.5 Intermediate plots

Save data to output files: (Done in saveData.m)

Overview The routine is called every pre-set time step. (controlled by saveSteps) Typi-
cally allele frequencies and Fst vs distance is included here.

2.4 Finalising

2.4.1 Output: time.txt files

Each run (within each calculation) produces one time.txt file. In these files, one line is
added every time step that statistics are calculated. Typical information is: the timestep,
the number of migrators, the average Fst and the Spearman’s rho for various diagnostics
versus Fst.

If a time.txt file with the same name already exists it is overwritten by later calcula-
tions/runs so always change the name of the output files (via outputFileStem, or directory
via outputFileDir) when previous results are supposed to be saved.

2.4.2 Output: fdh.txt files

Optionally (through calculateRawFst = 1) each run will produce a fdh.txt file. In these
files pariwise FST values are given between each deme pair. Also the distance and the
proportion of habitat is given between each deme pair.

2.4. FINALISING 23

2.4.3 Output: results.txt files

Each calculation performed produces one results.txt file, in which 1 line is added for each
run performed within the full calculation. The results printed here are time averaged values
over the last time steps, controlled via the input parameter aveLastSteps. Typical infor-
mation is: the number of the run, the number of migrators, the value of alphaLeptoKurtic,
and values for Spearman’s rho for various diagnostics.

If a results.txt file with the same name allready exists it is overwritten by later calcu-
lations so always change the name of the output files (via outputFileStem) when previous
results are supposed to be saved.

2.4.4 Output: .mat files

.mat files hold all information that was in the MATLAB memory at the time the file is
created. For Concordia this means all input parameters plus all data as it was in the final
time step of the calculation that created the .mat file.

The information in a .mat file can be loaded in MATLAB with the command:
load ’Test.mat’. This brings all information back into the memory and can be accessed
and examined as usual.

2.4.5 Plotting

Concordia produces several forms of output automatically. ”plotResults” controls the auto-
matically generated output after each run. Note that latest versions of the matrixes/values
used in the main file (Concordia.m) are saved in the memory after the calculation and can
be used for plotting results after the calculation is finished. By running the code in plot-
ting.m (by typing ”plotting”) the user can easily produce plots of pre-set format. Reset
the parameter ”plotResults” (by typing plotResults=5) before rerunning plotting gives dif-
ferent options. See plotting.m for the options.

Alternatively the user can create their own plot. For example, after the calculation is
finished, the user could type: ”scatter(MigrationDistance(1,:),Fst(1,:))” in the Matlab com-
mand line to get a scatter plot of Fst vs distance for deme 1. Or; ”plot(steps,DNAHist(10,1:istep))”
to get a plot of the number of allele type 10 versus time in the whole domain.

2.4.6 Checks and warnings

Throughout the code checks are implemented to prevent mistakes. The user should however
realise that it is close to impossible to prevent/predict all possible mistakes that could be

24 CHAPTER 2. THE FOUR STEPS OF A CALCULATION

made. So when using Concordia always check if the combination of input parameters are
sensible to use.

A big part of the checks/warnings is captured by checkInput.m, checkSetup.m and warn-
ings.m. These routines are not needed for the calculation but just help the user/developer
to run/expand the code without making mistakes.

After reading/defining the input parameters the function checkInput is called. In there
some basic checks are performed mainly to prevent not-allowed values for input parameters.
(such as negative values/inconsistent values etc.) When something impossible is asked by
the input parameters the code stops the calculations, when something strange/unrealistic
is asked a warning is given which is printed to the screen at the end of the calculation. (by
calling warnings.m)

warnings.m is called at the very end of the calculation. It should help the user to direct
him/her to points of improvement in the input parameters or bugs in the code.

Chapter 3

Main Matrixes

Here is an overview and explanation of the most important matrixes used in Concordia,
listed in alphabetical order.

- ”Children” is created in migration.m and passed to die.m. Children copies the in-
formation from ”Eggs” for the eggs that make it to the new generation. Most eggs don’t
make it (depending on the input parameter ”survivalChance”). So ”Children” also has 4
columns (as Grasshoppers and Eggs), 2 for locations and 2 for DNA.

- ”DemeAngles” holds the direction of the migration paths between all demes (in de-
grees). The direction of increasing Nx is taken as 0/360. The size of DemeAngles is
NumberOfDemes x NumberOfDemes. The diagonal of the matrix is zero and the matrix
is anti-symmetric (180 degrees difference between the direction of 3 to 1 from 1 to 3).

- ”DemeLocations” is a matrix used to initialize the field and determine migration prob-
abilities. It has 3 rows and as many columns as there are demes. The first two columns
hold the X and Y coordinate of the deme and the third a number to identify the deme
(”Deme number” or Deme-ID so to say).

- ”Eggs” is created and used in reproduce.m. It is build from the information in ”Par-
ents” and ”Grasshoppers”. Each couple (row) in ”Parents” produce ”numberOfOffspring”
eggs. The matrix Eggs has 4 rows (as Grasshoppers) to hold informations about their
current deme, deme of birth, DNA1 and DNA2. The number of columns is equal to the
number of eggs which is the number of couples (parents/2) times the number of offspring.

- ”Grasshoppers” is an important matrix which holds information about the individuals
and is used extensively in almost all functions. It has 4 rows (plus 2 rows for each extra
locus) and as many columns as there are individuals at the time of calculation (constant

25

26 CHAPTER 3. MAIN MATRIXES

for now since deme size is constant). Grasshoppers looks something like this:
— 2 1 5 ... Deme number where the individual is now.
— 2 3 5 ... Deme number where the individual started or was born.
— 3 3 5 ... DNA-information on 1st allele.
— 2 1 5 ... DNA-information on 2nd allele.

- ”Habitat” has the size of the landscape and hold a 1 for habitat and a 0 for non-
habitat. It is used to restrict the possible locations of the demes. (in initialise.m) It can
be used to guide/direct migration-paths and/or plot results on migration probability. The
matrix HabitatSetup is used in initialise.m to build the matrix Habitat.

- ”Landscape” is used for finding the ratio of habitat-nonhabitat on straight and least
cost paths. And for finding the least cost paths. Later in the code it is only used for
visualization. It is a LandsacpeNx by LandscapeNy matrix which has a 0 for ”land”, a 1
for a deme, and 2 for ”non-habitat”.

-”LandscapeList” Holds the same information as Landscape but is put in a list where
the coordinates of the landscape cells are translated to node numbers.

- ”MigrationDistance” holds information about the distances between each deme. This
matrix is always symmetric regardless of the distance law. It has the size of Num-
berOfDemes x NumberOfDemes. For now (18 March) the distance can only be calculated
as the shortest distance between 2 demes. It might be used in the future to hold ”relative
distances” based on terrain (longer over non-habitat). With different options to define the
distance. Distances are normalised to the lengthscale (LandscapeNx) for more physical
meaning.

- ”MigrationProb” is a matrix first created in initialize.m (based on the migration
law/code) and modified in migrationFail.m and blocking.m (based on the blocking code)
and acumulate.m. Later it is used in migrate.m. It has rows and columns equal to the
number of demes. Each row holds the (cumulated; scaled) probability to migrate from
deme (row) to deme (column). Note that going from 1 to 3 doesn’t need to have the same
probability as going from 3 to 1.

- ”Parents” is creates and used in reproduce.m. It is build from the matrix Grasshoppers
to link two parents together. It has 2 rows, one row for ”mothers” and one for ”fathers”,
holding the location/column-number of the mothers/fathers in the matrix Grasshoppers.
So each column holds the ”ID/location in Grasshoppers” of a couple. The code looks for
singles that live in the same deme to make couples of parents. Note that an odd number of
grasshoppers in one deme leads to not every individual finds a ”parent/couple”. The code
looks for couples stochastically, which is nice but takes a lot of calculation time.

27

-”PlotMigrationLaw” is a 2-row matrix to show the migration law after calculation. One
row holds the distance, the other the probability given by the migration-law. The distance
as saved here is non-Dimensional so 1 means LandscapeNx. (Type: ”plot(PlotMigrationLaw(2,:)
, PlotMigrationLaw(1,:))” in the comandline.) The resulting plot shows the migration func-
tion before dealing with blocking/failing/scaling.

- ”Shadow” has the size of NumberOfDemes x NumberOfDemes. It is constructed in
blocking.m. It holds a ”0” for demes that are blocked by other demes and a 1 for demes
that can be reached. Once constructed it is multiplied by MigrationProp to set the prob-
abilities of migrating to blocked demes to 0.

- ”SecondPath, ThirdPath, ..” have the size NumberOfDemes x NumberOfDemes.
These matrixes are constructed in the file ”higherOrderPath.m”. They are similar to
Shadow. The hold a 1 for the paths that need two steps (or 3 or 4..) to complete. They
hold a 0 in all other cases.

28 CHAPTER 3. MAIN MATRIXES

Chapter 4

Assumptions and simplifications

As any model, Concordia makes use of several assumptions and simplifications. The most
important ones are listed here.

4.1 Simplifications

• All individuals can mate with any other individual. The individuals are not separated
in male/female.

• All couples produce the same amount of eggs. (But not all have to survive to become
adults.)

• All demes hold the same number of individuals (demeSize=constant).

• Migration probabilities depend on the straight line distances between demes.

• The landscape consists only of ’suitable habitat’ and ’not suitable habitat’.

• The location of suitable habitat is rasterised to the resolution of the landscape cells.

4.2 Assumptions

• Generations do not overlap. Individuals produce eggs, die, and after that, the eggs
form the new generation.

• Individuals mate only once.

• All individuals mate to produce eggs unless there is an uneven number of individuals
in a deme.

• All individuals have the same probabilities to: migrate, die during migration, be left
out of the mating process.

• All eggs within one deme have the same probability to survive to adulthood.

• Allele type does not influence the probability to be passed to eggs.

29

30 CHAPTER 4. ASSUMPTIONS AND SIMPLIFICATIONS

Chapter 5

Performance

5.1 The speed of Concordia

In theory, Concordia can perform calculations with any number of demes and individuals
on a landscape of any size. It has been tested for landscapes up to 10.000x10.000 grid cells
on which no problems where reported. Tests on smaller landscapes with 1000 individuals
per deme and 10.000 demes were also successful. For many runs or runs with a big setup
however, calculation time becomes a severe limitation. (See figure 5.1)

The speed of a calculation is determined mainly by the size of the landscape and
the number of demes. Some effort has been made to make the code efficient, but at
several location in the code we chose clarity over speed and deliberately implemented time
inefficient routines. A considerable speed-up can be expected if we would rewrite these
routines. Several switches are included to switch off certain parts of the code that might
give a speedup.

When analysing the speed of calculations, split thinking in initialisation and time-
stepping. These things are very different and should be dealt with separately. The size of
the landscape (number of landscape cells) greatly influences the calculation time needed
for the initialisation phase. The number of demes influences both the initialisation phase
and the time stepping phase. The speed of initialisation is limited by leastCostPath.m and
habvsNonHab.m. The speed of time-stepping is limited by reproduce.m and statistics.m.

31

32 CHAPTER 5. PERFORMANCE

Figure 5.1: Indication of the speed of Concordia. Tests were performed on a laptop (stan-
dard MacBook, 2009) for different sizes of the landscape and number of demes. Each
calculation was restarted from scratch, recreating the landscape and random placement of
demes. The calculation time is extrapolated from 10 to 1000 calculations.

Part II

Benchmark and analytical
solutions

33

Chapter 1

Intro

For any numerical code, comparison to analytical solutions are necessary. So far, Concordia
has past several basic tests to analytical solutions which gives reasonable confidence that
calculations performed produce correct results. Concordia should be able to pass all tests
so if we think of another one we should implement and perform it.

A second reason to develop / find analytical solutions is to deepen our understanding
of the systems. An analytical prediction of the evolution of Fst-values over time, under
different conditions, would be ideal. The sections below describe simplified scenarios where
analytical solutions are developed and tested which could eventually lead to predictions of
Fst in a complex system where migration and fixation work simultaneously.

The analytical solutions described here have as goal to predict the evolution of the value
of Fst over time in a system where individuals are both migrating and reproducing. In
order to reach that goal we first developed solutions for systems in which either migration
or reproduction was not allowed. In that way, we can isolate and study the effect of these
two things independently.

At some point, we found it necessary to build solutions to scenario’s where migration
is only possible in one-way. This is not realistic (and probably eventually not needed) but
was very useful in working towards solutions for two-way migration. It is also helpful in
the sense that we now have at least a starting point for a-symmetric migration. All other
scenario’s considered assume equal migration probability to all demes where in simulations,
we typically use a distance-dependent migration law.

35

36 CHAPTER 1. INTRO

Chapter 2

Fixation speed: Reproduction
without migration

demeTotal can be set to 1 or migration can be stopped to create this scenario. When
migrationProb=0, migration is not allowed so the system evolves only due to fixation.

The average number of timesteps it take before only 1 allele-type is present in a deme
(fixation time) follow the analytical solution (see for example Wikipedia):

Fixation Time =
−4 ∗ demeSize ∗ (1− p) ∗ ln(1− p)

p
(2.1)

where p is the allele frequency which equals (on average) 1/maxAllele when DNA is
allocated ad random.

A fit between this equation and several calculations performed by Concordia is shown
in figure 2.1.

Note that demeSize in this equation (2.1) is the effective population size which is the
same in our setup. This equation assumes DNA passing to the next generation ”drawn
ad random from the allele-frequency table”. In Concordia this can be approximated by
chosing a high value for ”numberOfOffspring”, in the same order as ”demeSize”.

37

38 CHAPTER 2. FIXATION SPEED: REPRODUCTION WITHOUT MIGRATION

Figure 2.1: Fixation without migration. Varying both demeSize and Allele fraction (max-
Allele). The results shows a good fit to the analytical solution. (Image produced with
version 22-nov-2011)

Chapter 3

Pure mixing: Migration without
reproduction

Via the input parameter noChildren the user can switch off reproduction (and dying). In
this way, the effect of migration can be isolated and studied.

3.1 Pure mixing: Asymptotic value

Without reproduction, we can track where grasshoppers migrate to, and via initDNA=1
(all individuals get the DNA x,x where x is the deme number they start in) we can track
how the DNA spreads over the domain. After a state of perfect mixing is reached the
distribution of individuals with the same DNA over all demes is predictable and should
follow a poisson distribution. So the number of individuals with DNA x,x in each deme
should have a predictable distribution and standard deviation.

The standard deviation is calculated as:

Standard Dev. =
√

demeTotal−1 ∗ Σi=demeTotal
i=1 (Xi −mean)2, (3.1)

where X is the number of individuals with DNA 1,1 in deme i, and mean is the average
individuals with DNA 1,1 in a deme (which equals demeSize/demeTotal).

The standard deviation used is calculated for all starting demes (first DNA 1,1 then
2,2, then 3,3 etc.) and averaged.

For a perfectly mixed system this standdard deviation is:

Standard Dev. =
√
mean (3.2)

or:

Standard Dev. =

√
demeSize

demeTotal
(3.3)

39

40 CHAPTER 3. PURE MIXING: MIGRATION WITHOUT REPRODUCTION

Figure 3.1: Pure mixing. This calculation was performed in a way that no reproduction
(or dying) was possible, only migration. The results shows a good fit to the analytical
solution. (Image produced with version 22-nov-2011)

The parameter migrationProbability (partly) controls the time it takes (number of
timesteps) before the analytical solution is met. Results are shown in figure 3.1.

3.2 Pure mixing: Predicting evolution and time till perfectly
mixed

The previous section described an analytical solution for the perfectly mixed state. This
section describes the evolution of the system before that state is reached. In other words,
we seek an analytical solution for the standard deviation as function of time.

3.2. PUREMIXING: PREDICTING EVOLUTION AND TIME TILL PERFECTLYMIXED41

3.2.1 The standard deviation for Time=0

At time=0, all indiciduals with DNA 1,1 are in deme 1, and none are in the other demes.
So at time=0, the standard deviation of the number of individuals with DNA 1,1 in all
demes is:

Standard Dev. =

√
(demeSize−mean)2 + (demeTotal − 1) ∗ (mean)2

demeTotal
(3.4)

mean =
demeSize

demeTotal
(3.5)

Standard Dev. =

√
(demeSize− demeSize

demeTotal)
2 + (demeTotal − 1) ∗ (demeSize

demeTotal)
2

demeTotal
(3.6)

Standard Dev. =

√(
dS2 − 2

dS2

dT
+

dS2

dT 2
+

dS2

dT
− dS2

dT 2

)
∗ 1

demeTotal
(3.7)

Standard Dev. =

√
demeSize2

demeTotal
− demeSize2

demeTotal2
(3.8)

Standard Dev. =
√
mean ∗ (demeSize−mean) (3.9)

For understanding, compare the first equation with equation 3.3. The rest is just
rewriting the first equation to arrive at a simpler, more general form, written in the last
equation which we can now use to make further predictions about the evolution over time.

3.2.2 Prediction for Time=Infinite

From the previous section we know that at time=infinity, the standard deviation will be:

Standard Dev. =

√
demeSize

demeTotal
(3.10)

3.2.3 Form of the equation to find

Combining equations 3.9 and 3.10 to one equation gives:

Standard Dev.(Time) =

√
demeSize

demeTotal
∗X (3.11)

where X has to run from
(
demeSize− demeSize

demeTotal

)
(at time=0 to match equation 3.9) to 1

(at time=inf to match equation 3.10).

42 CHAPTER 3. PURE MIXING: MIGRATION WITHOUT REPRODUCTION

Figure 3.2: Pure mixing. Same setup as before, now matching evolution for 3 different
values of the migrationProb. The blue lines follow equation 3.12, and the red lines come
from the calculation. The same equation fits different values for demeSize and demeTotal
but a plot in the same figure would require some more programming. (Image produced
with version 6-dec-2011)

3.2.4 The eventual equation

After running a few testcases and trying to get a fit this equation seems to work very well
(plotted in figure 3.2) :

StandDev.(Time) =

√
(c(Time)−mean)2 + mean ∗ (c(Time)−mean)

demeTotal
+

demeSize− c(Time)

demeTotal − 1
(3.12)

where c(Time) is the number of individuals with DNA 1,1 in deme 1 (on average). I found
this equation by thinking about the effect of the number of individuals that are still in their
starting deme, and the individuals that moved to an other deme separately. In equation
3.12 the first term under the square-root describes the effect of the own deme (compare to

3.2. PUREMIXING: PREDICTING EVOLUTION AND TIME TILL PERFECTLYMIXED43

the equation defining standard deviation for understanding), and the second the effect of
the other demes (which had canceling terms in it so is a bit harder to understand).

At Time = 0: c(Time)=demeSize (since all are in the starting deme), which means
that the second term equals 0. At Time = infinity: c(Time)=mean, which means that
the first term equals 0.

3.2.5 Show that the equation fits T=Infinity

To match equation 3.2 at Time = Infinity, our equation has to equal
√
mean. Which

can be shown as follows:

Standard Dev.(Time=Inf) =

√
0 +

demeSize− c(Time = Inf)

demeTotal − 1
(3.13)

Standard Dev.(Time=Inf) =

√
demeSize− demeSize

demeTotal

demeTotal − 1
(3.14)

Standard Dev.(Time=Inf) =

√
demeSize(1− 1

demeTotal)

demeTotal(1− 1
demeTotal)

(3.15)

Standard Dev.(Time=Inf) =

√
demeSize

demeTotal
=
√
mean (3.16)

3.2.6 Show that the equation fits T=0

To match equation 3.9 at Time = 0, our equation has to equal
√
mean ∗ (demeSize−mean).

Which can be shown as follows (using ”dS” for demeSize and ”dT” for demeTotal), note
that c(T=0)=demeSize:

StandDev.(T=0) =

√
(c(T = 0)−mean)2 + mean ∗ (c(T = 0)−mean)

demeTotal
+ 0(3.17)

StandDev.(T=0) =

√(
(dS − dS

dT
)2 +

dS

dT
∗ (dS − dS

dT
)

)
∗ 1

dT
(3.18)

StandDev.(T=0) =

√(
dS2 − 2 ∗ dS

2

dT
+

dS2

dT 2
+

dS2

dT
− dS2

dT 2

)
∗ 1

dT
(3.19)

StandDev.(T=0) =

√(
dS2

dT
− dS2

dT 2

)
(3.20)

StandDev.(T=0) =
√

mean ∗ (demeSize−mean) (3.21)

44 CHAPTER 3. PURE MIXING: MIGRATION WITHOUT REPRODUCTION

3.2.7 Find an equation for c(Time)

In plotting.m, c(Time) is calculated by calculating b and d, where b is the number of
indivuduals with DNA 1,1, leaving deme 1; and d is the number returning to deme 1.

b = c(time) ∗migrProb (3.22)

d = migrProb ∗ (demeSize− c(time))/(demeTotal − 1) (3.23)

c(time + 1) = c(time)− b + d (3.24)

It should be not to difficult to find an equation which predicts this decay. See that c
starts as ”demeSize”, and ends as ”mean”.

The individuals that stay behind in the starting deme (so not including the ones that
migrate and come back) follows a basic exponential decay as:

IndividualsLeftInDeme(Time) = demeSize ∗ (1−migrProb)T ime (3.25)

where Time simply is the number of time steps.

The individuals that return will be:

ReturningIndividuals(Time) = migrProb ∗ demeSize− IndividualsLeftInDeme

demeTotal − 1
(3.26)

These two equations have to ”update each other” each time step. So they can be solved
iteratively as is done in Matlab.

c(Time) = demeSize∗(1−migrProb)T ime+
demeSize− demeSize ∗ (1−migrProb)T ime

demeTotal
(3.27)

3.2.8 Write the equation to a final form

Our final equation (3.12) can be written in a slightly more practical form.

StDev.(Time) =

√
(c(Time)

demeTotal
∗ (c(Time)−mean)) +

demeSize− c(Time)

demeTotal − 1
(3.28)

3.3 Pure mixing: Predicting Fst-global

By careful inspection of how the Fst-values and the standard deviations are calculated it
becomes clear that the two are a measure of the same quantity (how well the system is
mixed), and so one can be transformed into the other.

3.3. PURE MIXING: PREDICTING FST-GLOBAL 45

Figure 3.3: Migration, linking Fst and stand deviation. The figure shows the measured
average Fst (global, via HtCode=1) and the measured standard deviation (as before). Plus
the Fst calculation from the standard deviation and the standard deviation calculated from
the observed Fst. Conversion is perfect since the lines are virtually the same. (Image
produced with version 22-nov-2011)

Fst-global =

(
equation 3.11

equation 3.9

)2

(3.29)

Fst-global (Time) =

Standard Dev.(Time)√
demeSize2

demeTotal

2

(3.30)

Equation 3.30 can be understood by realizing that the time dependent standard devi-
ation is scaled by its starting value. Then squared to translate the standard deviation to
the variance which is the measure used in calculating the Fst parameter. Equation 3.30
can easily be inverted to calculate the standard deviation if the Fst-value is known.

Since we found an analytical solution to the evolution of the standard deviation (section

46 CHAPTER 3. PURE MIXING: MIGRATION WITHOUT REPRODUCTION

3.2, equation 3.12) equation 3.30 gives us an analytical solution of the evolution of Fst over
time in a system where only migration is acting and fixation is not possible.

Figure 3.3 shows the conversion from Fst to standard deviation and standard deviation
to Fst.

Chapter 4

Reproduction plus migration: 1
way migration

Now we have some idea how reproduction and migration individually effect the evolution
of the system the next step is to try to understand and predict their effect in a system
where both migration and reproduction takes place. Lets start with 1 way migration, so
their is a separation between sending and receiving demes.

4.1 Reproduction plus migration: 2 demes, 1 sending, 1 re-
ceiving

The setup chosen is a landscape with only 2 demes, starting with all individuals in deme
1 having DNA 1,1 and all in deme 2 having 2,2. Migration is only possible from deme 1
to deme 2 so eventually both demes will consist only of individuals with DNA 1,1. An
analytical solution is derived here to predict how many time steps that will take. Migra-
tion is set such that all individuals that leave deme 1 will arrive at deme 2 (migrationlaw
- migrationfailing etc. are not included.).

The analytical solution for the fixation time given in equation 2.1 predicts the time till
fixation starting from the moment that the individual that will eventually pass its DNA
to the whole deme is present in that deme. So to develop an analytical solution to our
scenario here, we can use that prediction and add the time it takes for an individual that
will take over the deme to reach the deme (migration speed).

The speed with which migrators arrive at deme 2 = migrationProbability*demeSize.

The probability that this individual will eventually pass his DNA to the whole deme =
1/demeSize (all individuals present in deme 2 have equal chance).

47

48 CHAPTER 4. REPRODUCTION PLUS MIGRATION: 1 WAY MIGRATION

Figure 4.1: Fixation plus migration. Average result over 50 calculations per data point.
(Image produced with version 22-nov-2011)

So the speed at which individuals that will pass their DNA to the whole deme arrive
at deme 2 is given by the SuccesSpeed:

MigrationSpeed = migrationProbability ∗ demeSize (4.1)

SuccesChance = 1/demeSize (4.2)

SuccesSpeed = MigrationSpeed ∗ SuccesChance = migrationProb. (4.3)

where SuccesSpeed has the unit [per timeStep] so 1/SuccesSpeed is of unit [timeSteps].
So 1/SuccesSpeed is number of timeSteps it takes, on average, before a migrater arrives at
deme 2 that will eventually pass its DNA to the whole deme. Last step is to add this to
the fixation time we had before which gives:

TotalF ixationT ime = 1/migrationProbability + FixationT ime (4.4)

4.2. REPRODUCTION PLUSMIGRATION: SEVERAL DEMES RECEIVING, 1 SENDING49

As shown in figure 4.1 this solution fits the data well if the FixationTime is smaller
than the succes speed. Which means that (on average) fixation is completed before the new
”successful migrator” will arrive. If the fixation time is longer than the succes speed, total
fixation is faster than predicted by our equation because during the fixation process new
successful migrators arrive that will speed up the fixation process (left side of figure 4.1).
I think it is possible to capture this effect in the equations to make a ”perfect prediction”
for total fixation time for this setup.

Note that in equation 2.1 we have to set the allele-frequence (p) to 1/demeSize since
this will be the allele frequency of allele 1 in deme 2 at the start of the fixation phase.

Combining the equations give the prediction for this scenario as:

Total Fixation Time =
1

migrProbability
+
−4 ∗ demeSize ∗ (1− p) ∗ ln(1− p)

p
, (4.5)

where p = 1
demeSize

4.2 Reproduction plus migration: several demes receiving,
1 sending

As will become clear in later sections, in order to understand more complex systems, we
first have to extend equation 4.5 to a more general case where any number of receiving
demes can be present.

In this section we investigate the total fixation time for the setup of several demes
receiving migrators and only deme1 can send migrators to all other demes (with equal
probability using testCase=3).

The FixationT ime for each receiving deme is the same as before, what changes is the
MigrationSpeed (and so the SuccesSpeed) since now the migrators have to invade more
demes.

In the case of 3 demes (2 receiving), 2 demes have to be invaded. The first deme
to be invaded will take the SuccesSpeed (plus Fixation Time), the second one will take
longer since the now successful migrators are send to both demes, which means that half
of them will arrive at the deme that is already going to be overtaken. So, on average, after
1 ∗ SuccesSpeed it will take 2 ∗ SuccesSpeed to send a succesful migrator to the second
deme. Then it will take FixationT ime before this deme will reach fixation as well.

50 CHAPTER 4. REPRODUCTION PLUS MIGRATION: 1 WAY MIGRATION

Figure 4.2: Fixation plus migration, 1 way migration. Same setup as before but now
added ’3-demes’ (2 receiving) and ’4-demes’ and ’5 demes’. Analytical solutions according
to equation 4.12, where ’x’ is explained below and p = 1/demeSize. Average result over
100 calculations per data point. (Image produced with version 28-nov-2011)

The ’new’ TotalF ixationT ime, the time it takes before all demes reached fixation is
thus:

Total Fixation Time = 1 ∗ Succes Speed + 2 ∗ Succes Speed + Fixation Time, (4.6)

where the 2 terms with SuccesSpeed combined represent the time it takes before both
demes have received a migrator that will eventually spread its DNA to the whole deme.

To expand this equation to work for any number of demes we need to add a ”SuccesSpeedTerm”
for each deme that needs to be invaded (so demeTotal − 1 in total).

Each of these terms consists of 1/”the chance of reaching a deme that has not been
reached yet” * SuccesSpeed. For 2, 3, 4 and 5 demes that equals:

(1) ∗ Succes Speed = 1 ∗ Succes Speed, (4.7)

4.2. REPRODUCTION PLUSMIGRATION: SEVERAL DEMES RECEIVING, 1 SENDING51

(1 + 2) ∗ Succes Speed = 3 ∗ Succes Speed, (4.8)

(1 + 1.5 + 3) ∗ Succes Speed = 5.5 ∗ Succes Speed, (4.9)

(1 + 1.33 + 2 + 4) ∗ Succes Speed = 8.33 ∗ Succes Speed. (4.10)

which is what is plotted in figure 4.2.
These equations can be put in general form as:

Succes Speed Term = Σi=demeTotal−1
i=1

(
(demeTotal-1)

i

)
∗ Succes Speed, (4.11)

So the final equation which predicts the average number of timesteps it takes before
the whole domain reaches fixation in this scenario becomes:

TFT =

Σi=demeTotal−1
i=1

(
(demeTotal-1)

i

)
migrProbability

+
−4 ∗ demeSize ∗ (1− p) ∗ ln(1− p)

p
, (4.12)

where ”TFT” is the total fixation time and p = 1/demeSize.

This equation is in good agreement with the results from Concordia plotted in figure
4.2.

52 CHAPTER 4. REPRODUCTION PLUS MIGRATION: 1 WAY MIGRATION

Chapter 5

Reproduction plus migration: 2
way migration

The next step is to consider 2 way migration, so their is no longer a separation between
sending and receiving demes. All demes can both send and receive migrators.

5.1 Reproduction plus migration: 2 demes, 2 sending, 2 re-
ceiving

Repeat the previous experiment with 2-way migration.
The results of some test-calculations are plotted in figure 5.1. The slope of the line fits

1/(2*migrationProbability). Which makes sense since now twice as many individuals are
migrating.
The starting value can be explained as follows.

When migrationPorbability is very high (so 1/migrationProbability approaches 0), the
2 demes can be seen as 1 deme (since transport-interaction is so high) for which we can
immediately apply the equation for fixation time within 1 deme (equation 2.1).

Where now the demeSize is the size of both demes together, so demeSize*demeTotal,
and alleleFrequency (p) is now 1/demeTotal. So the equation now looks like:

Fixation Time =
−4 ∗ demeSize ∗ demeTotal ∗ (1− p) ∗ ln(1− p)

p
(5.1)

The equations from the previous sectiion have to change to:

MigrationSpeed = 2 ∗migrationProbability ∗ demeSize (5.2)

SuccesChance = 1/demeSize (5.3)

53

54 CHAPTER 5. REPRODUCTION PLUS MIGRATION: 2 WAY MIGRATION

Figure 5.1: Fixation plus migration. Average results over 100 calculations per data point.
Holding 2 demes from which individuals can migrate to each other. Calculations are
performed for demeSize=50 and demSize=75. numberOfOffspring=demeSize. Clearly dy-
namics is different from the ”1-way migration setup”. Results seem to fit the equations
plotted very well. (Image produced with version 28-nov-2011)

SuccesSpeed = MigrationSpeed ∗ SuccesChance = 2 ∗migrationProb. (5.4)

Total fixation time obays:

TotalF ixationT ime = 1/(2 ∗migrationProbability) + FixationT ime (5.5)

where the FixationTime now has a multiplication of demeTotal in it (equation 5.1).

Part III

Miscellanious

55

Chapter 1

Contact and reference

1.1 Contact

Concordia is made freely available so if you consider using it please do so. It would be
appreciated if you inform either Hein van Heck or Maarten van Strien.

1.2 Reference

Ibrahim KM, Nichols RA, Hewitt GM (1996). Spatial patterns of genetic variation gener-
ated by different forms of dispersal during range expansion. Heredity 77: 282-291.

57

