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1 METHODS
1.1 Problem Formulation
Given an unweighted and undirected graph G = (V,E) (PPI
network) with V the set of graph vertices (i.e proteins), E ⊆ V ×V
the set of edges (i.e protein interactions) and a list of interesting
vertices P (seed list of proteins), the problem to be solved is to
identify subgraphs G′ = (V ′, E′) that are densely connected and
include proteins in P .

Graph based objective. The first objective is formulated as a
maximisation of the subgraph density fdensity(G′). Computed as
the ratio between the number of interactions found between proteins
of the subgraph over the total of all possible interactions, it is defined
as follows:

fdensity(G′) =
2|E′|

|V ′|(|V ′| − 1)

where V ′ is the set of proteins in a given solution G′ and E′ is a
subset of E containing only interactions between proteins in V ′.

Seed list based objective. The second objective seeks to include as
many seed vertices (proteins of interest) of P as possible in G′ and
is referred to as the coverage:

fcoverage(G
′) =

|P
⋂
V ′|

|P |

which is maximised whenever all proteins of the seed |P | are
chosen.

Both fdensity(G′) and fcoverage(G
′) functions are ranged in

[0, 1]. Adding a large number of irrelevant proteins, up to an extreme
solution in which all proteins are chosen (V ′ = V ), will not degrade
the coverage function. However, in practice increasing the number
of irrelevant proteins in V ′ rapidly degrades the density (fdensity)
of the solution G′. In the same manner, small solutions may have
high density (e.g. local cliques) but will rarely include many seed
proteins from P .

1.2 Multi-objective optimisation for relevant subgraph
extraction

Finding dense subgraphs is an NP-hard task (Feige et al., 2001).
Optimisation of multiple objectives makes the problem become even
more intractable. To address the problem of extracting subgraphs
satisfying the density and coverage criteria, PEPPER uses a Multi-
Objective Genetic Algorithm (MOGA) approach to extract a set

of solutions maximising both objective functions. MOGA belong
to a family of meta-heuristic optimisation algorithms that mimic
biological evolution and natural selection to evolve candidate
solutions then determine the fittest individual - representing a
solution - relatively to defined fitness functions. The Strength Pareto
Evolutionary Algorithm 2 (SPEA2, Zitzler et al. (2001)) was used
to optimise simultaneously the Graph- and seed list-based objective
functions. The MOGA components and operators are described in
the following subsections.

Solutions representation and fitness function. Given a PPI
network G = (V,E), a candidate solution is encoded into a binary
chromosome of size |V | representing the indexed set of V . A 1
value at position i corresponds to the presence of the ith protein.
PEPPER uses the SPEA2 implemented in the open-source JMetal
platform (Durillo and Nebro, 2011). Based on the notion of non-
dominance for fitness evaluation, the algorithm searches a set of
Pareto optimal solutions. A solution is Pareto optimal when no
other solution is better in all fitness functions and therefore any
of the objectives cannot be improved without degrading another.
For instance in our problem, a set of proteins is a Pareto optimal
solution when no other set has both a higher density (fdensity) and
higher coverage (fcoverage) and any other Pareto optimal solution
with a higher value in one of these function will necessarily have a
lower value in the other. The output of the MOGA is a set S of m
solutions S = G1, G2, ..., Gm, which represents an estimation of
the whole set of Pareto optimal solutions, also called Pareto front.
All the solutions in S are available for custom visualisation and
post-processing in the Cytoscape app.

Initialisation. MOGA requires the initialisation of a predefined
number of chromosomes (population). The initial population is
constructed with chromosomes composed of random proteins in P
and as many proteins randomly picked in the neighbourhood of P
in G within a radius of 2.

Genetic operators and parameter settings. PEPPER’s MOGA
optimises fdensity(G′) and fcoverage(G′) objectives by performing
changes driven by mutations (adding or removing a protein) and
crossing-over (interchanging sets of proteins in two independent
solutions) operators among chromosomes. At each iteration of
the algorithm, random chromosome pairs are exposed to these
operations and generate offspring sets. Given the two objectives,
fittest chromosomes are then selected by binary tournament to
evolve the population.
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Fig. 1. Density and modularity of the merged optimal Pareto solutions as
a function of the number of generations and size of the population. Results
obtained on the ATG10 protein of the autophagy proteomic study. The error
bar correspond to the standard deviation of 5 replicates.

The MOGA requires several parameters which mainly impact the
rate of convergence. These parameters include size of the population
(number of individuals in a generation), number of generations
(iterations), mutation rate, crossover rate and size of the Pareto front
to return. In order to define a set of default parameters, we tested the
MOGA on a Human proteomics dataset of the autophagy system
(Behrends et al., 2010) using the Hippie protein network (Schaefer
et al., 2012b) after removing protein interactions originating from
the proteomics study. Figure 1 shows density and modularity values
of the merged pareto solutions (see next section) as a function of
their size and the number of generations. Using 200 individuals per
generation allowed to converge rapidly and with lower variance, as
early as 500 generations for the example given in Fig. 1. Based on
these results and on general observations of other proteins from the
same dataset, in PEPPER , default number of generations was set
to 1,000 and number of individuals to 200. Maximum coverage is
virtually always obtained independently of the parameters and is
therefore not shown. The other parameters of the MOGA were set
to the standard SPEA2 in the JMetal platform and are reported in
table 1.

Merging Pareto optimal solutions. From the union of Pareto
optimal solutions ∪S , we devised a simple algorithm to build a
consensus modular subnetwork noted Sf . The use of modularity is
based on a common observation that functional processes are often

Parameter Value

Population size 200
Crossover PC = 0.90
Mutation PM = 0.10
Number of generations 1000
Pareto front 10 solutions

Table 1. Parameters of the multi-objective evolutionary algorithm.
Crossover and Mutation, the genetic algorithm operators, are expressed as
probabilities.

found in modular subparts of biological networks. This inspired
clustering algorithms to use this measure which has led to successful
application in particular in protein complex discovery problems
(Nepusz et al., 2012). The modularity is defined here for a subset of
proteins as the ratio between the number of interactions that occur
only between these proteins against the number of other interactions
involving these proteins in the whole PPI (G). It can be computed
for a subgraph G′ = (V ′, E′) as follow :

fmodularity(V ′, E′) =

∑
i,j∈V ′,i 6=j E

′(i, j)

2×
∑
i∈V ′,j 6∈V ′ E(i, j)

with G = (V,E) and G′ ⊆ G.
The merge algorithm starts from all the proteins in P that were

found in at least one solution (∪S ∩ P ) and iteratively tries to add
one of the remaining expansion proteins (∪S \ P ). At each step the
expansion protein which maximises the overall modularity is kept
until it cannot be increased anymore. This greedy algorithm has
two characteristics. First, it keeps all the proteins from the initial
set P which were identified in at least one of the Pareto optimal
solutions of S. Second, it helps removing non-specific proteins
which could have been added because of their high connectivity
(which will increase density) but low specificity to the subnetwork
of interest (which will decrease modularity), typically hub proteins
of the network.

The final consensus network Sf is the protein complex predicted
by PEPPER. Union of all optimal solutions (∪S) and predicted
complex are the networks that are first generated by PEPPER in
Cytoscape, showing a mixture of expanded and initial proteins
as well as a bait protein if provided. All solutions in S are also
available for visualisation and analysis in Cytoscape Results panel.

1.3 Assessment of predicted protein complexes
A set of methods are used to analyse the specificity of the predicted
expansions to the solution and the initial list of proteins of interest
(P ). This allows indicating the relevance of the overall predicted
protein complex and of each of the expansion proteins. Four scoring
measures are browsable in Cytoscape Results panel for a given
predicted complex and viewable as a color code for the expansion
proteins based on:

• topological connectivity to assess the importance of a protein
in connecting the predicted complex

• co-occurrence in a repository of hand-curated protein
complexes

2



PEPPER - Methods

• similar functional annotation, particularly in terms of cellular
localisation and function

The aforementioned analysis is proposed as an integrated pipeline
automatically performed following the evolutionary-base network
extraction and merge steps.

Topological considerations. Four topological properties are used:
degree and clustering coefficient, known to be good assessment
factors in cellular biology and proteomics studies (Glaab et al.,
2010; Aittokallio and Schwikowski, 2006; Özgür et al., 2008);
modularity, which is used in the merge algorithm and more
generally used for protein complex discovery (Nepusz et al., 2012);
and closeness centrality, a measure used as an indicator of the
overall similarity of a network nodes (Özgür et al., 2008). These
measures were calculated for:

1. The whole predicted subnetwork, i.e. the solution given by
PEPPER noted Sf

2. Only proteins of interest used as an input to PEPPER present in
the final solution (P ∩ Sf )

These measures are reported in Cytoscape Results panel, in which
differences between the original list and the final solution serves as
a first indicator of PEPPER’s predictions importance. Then, each of
these topological measures are computed for each of the expansion
proteins and are summarised in a global topological score ranged in
[0, 1] using the following formula:

Scoretopology(X) =

∑
π∈Π

Xπ
max(π)

|Π|

with X a given protein, Xπ the measure π associated to the
protein X , max(π) the maximum observed for measure π in the
subnetwork and Π the set of all the topological measures used:
degree, clustering coefficient, modularity or closeness centrality.

Overlap with known protein complexes. PEPPER was developed
to solve problems encountered in proteomics studies, in particular
for protein complex discovery. Therefore, the second measure of
similarity takes into account the co-occurrence of predicted proteins
in large collections of hand-curated protein complexes. These are
available inside the plugin and were retrieved from the CYC2008
database for S. cerevisiae (Pu et al., 2009) and the CORUM
database (Ruepp et al., 2008) for mammals.

Predicted complexes are evaluated using the matching score (also
known as overlap score in Bader and Hogue (2003)):

MS(S,R) =
|S

⋂
R|2

|S| ∗ |R|

where S and R respectively correspond to the sets of proteins in
the predicted and reference complexes. The latter matching score
is computed for any reference protein complex that presents at
least one proteins in the predicted subnetwork. For each match
between a predicted and reference complex, PEPPER also generates
and displays its associated performances in terms of sensitivity,
precision and geometric accuracy (cf. section 2.2).

In order to evaluate and rank expansion proteins, each expansion
is scored based on its occurrence in reference complexes associated

to the solution given by PEPPER. This score is weighted by the
matching score to give higher ranks to proteins that occur in
reference complexes, which are more relevant to the solution. It is
computed as follows:

Scorecomplex(S,X) =

∑
r∈R |X ∩ r| ×MS(P, r)

|R|

where S is a PEPPER predicted complex, R is the set of reference
complexes with at least one protein shared in S and X is one of the
expansions in S. Known protein complexes matching thus results
in a detailed list of overlapping complexes with PEPPER predictions
but also provides a score translating expansions importance in those
complexes.

Common functions and co-localisation. Proteins associating in a
complex are necessarily co-localised in the cell and are likely to
share a given biological function. Based on this, gene annotations of
cellular function and localisation were used to estimate the relevance
of the predicted complex and each of the expansion proteins. This
was computed based on the Gene Ontology (GO) annotations.
A hypergeometric test is used to identify Biological Process and
Cellular Component annotations that are significantly associated
with the predicted protein complex (with α < 5%).

To evaluate expansion proteins individually, each of them are
scored by the number of annotations they share with those found
to be specific to the overall predicted complex as follows:

ScoreGO(X) =
|XGO ∩ SGO|
|SGO|

where SGO is the set of GO terms (Biological Process: gobp; or
Cellular Component: gocc) associated with a solution of PEPPER S
(hypergeometric test α < 5%), X is the protein contained in S that
is scored and XGO is the set of annotations of X . Each expansion
protein is scored by the number of functional and localisation terms
it shares with the overall predicted complex.

Protein expansions global score. The integrated post-processing
pipeline provides four distinct scores related to: (i) topology, (ii)
reference complexes, (iii) Biological Process GO terms and (iv)
Cellular Component GO terms. To summarise the information at
a higher level, expansion proteins must be characterised by an
integrated post-processing score. Several aggregation methods can
be used to merge and normalise scores in a [0, 1] range: mean,
max or min. In order to identify the best aggregation method, we
compared the ranking of the expansion proteins using these methods
with an approximation of the optimal ranking. The reference
ranking is defined by the ranked list that minimises the distance
with the rank given by each of the individual scores. This optimal
ranked list was obtained using the R package RankAggreg Pihur
et al. (2009), which uses a Cross-Entropy method to identify the
ranking minimising the sum of absolute differences with the ranks of
each individual score. Because of the computational time required
to obtain this optimal ranking, RankAggreg was used only for
comparison and was not directly integrated in the pipeline.

Figure 2 shows the distribution of Spearman correlations of
several score aggregation methods with the optimal ranking from
RankAggreg for 10 sets of expansions from 10 pull-down assays led
in the Human autophagy system (Behrends et al., 2010). Besides
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Fig. 2. Distribution of Spearman correlations between optimal rankings of
expansion proteins identified RankAggreg and ranking obtain by several
score aggregation methods.

mean, max and min, we also used the score integration function
introduced in the String database (von Mering, 2004) (1−

∏
i

(1−Si),

with Si corresponding to each individual scores). These results
show that the mean of the scores is the closest to the optimal ranking
of the expansion proteins. The min function also appears to be an
efficient aggregation method; however, a large set of expansions
present at least one null score (approximately 30%).

In order to bring more flexibility to the global score calculation,
PEPPER gives the possibility to add weights to each score and
compute a weighted arithmetic mean such as:

ScorepostProcess(X) =

∑
i∈ζ ωixi∑
i∈ζ ωi

where X represents a specific protein expansion, x its associated
score to a post-processing feature, ω the weight given to the latter
feature within ζ the set of post-processing assessment criteria:

ζ = {Scoretopology, Scorecomplex, Scoregobp, Scoregocc}

Each score weight has a default value equal to 1, which
summarises equally the information from each post-processing
feature into a common mean 1

n

∑n
i=1 xi, where n is the

overall number of assessment criteria. Choice to modify weights
individually is left to users in PEPPER post-processing panel
”Overview” tab. Tuning those parameters is a way to make
abstraction of certain properties, which may be helpful for results
visualisation and interpretation since the plugin automatically
updates the overall post-processing score as users modify weights.
PEPPER dynamically translates each expansion overall score into a
red color gradient (the darker the higher) in Cytoscape graphs.

2 PERFORMANCE COMPARISON
2.1 Comparison principles
To evaluate the ability of PEPPER to find relevant protein complexes,
we applied it to real Affinity-Purification followed by Mass-
Spectrometry (AP-MS) data and compared the results to gold

standard sets of hand-curated reference protein complexes. Each of
the AP-MS experiments performed on a single bait protein resulted
in a list of preys and the union of both was used as a seed list of
proteins. For each seed, the best matching reference complex from
the gold standard was considered as the complex to be predicted.
Therefore, only AP-MS with high matching reference complexes
and for which no ambiguity was possible (only one highly
matching reference complex) were selected. PEPPER was directly
applied to each of these selected seeds. State-of-the-art protein
complex discovery algorithms based on graph clustering, namely
MCODE (Bader and Hogue, 2003) and ClusterONE (Nepusz et al.,
2012), were used for performances comparison. Network clustering
methods do not aim at finding protein complexes from a seed protein
list of interest but rather enumerate all protein complexes in a
PPI network. Therefore, these two methods were applied to the
PPI network also used in PEPPER and the extracted complex with
the highest overlap with the seed was considered as its associated
prediction. For fair comparison, we tested several overlapping
measures (intersection, Jaccard and Matching-Score) and reported
only the results of the measure with highest performance which was
obtained with the absolute size of the intersection.

2.2 Assessing performances
For each of the protein complexes predicted by PEPPER,
ClusterONE or MCODE, the overlap of the set of predicted proteins
with the known complex was computed as well as four common
prediction performance measures:

• True Positive, TP: the number of proteins of the predicted
complex that are found in the reference complex.

• True Negative, TN: the number of proteins that are not in
the predicted complex and that are not found in the reference
complex.

• False Positives, FP: the number of proteins of the predicted
complex that are not found in the reference complex.

• False Negative, FN: the number of proteins that are not in the
predicted complex that are in the reference complex.

Because the total number of proteins in the PPI network is
several orders of magnitude higher than the number of proteins in
the predicted or reference complexes, the number of TN provides
little information. Therefore, we chose the following measures
commonly used in information retrieval:

• sensitivity, also called True Positive Rate (TPR), which
evaluates how well positives are predicted,

Sn =
TP

TP + FN
(1)

• precision, also called Positive Predictive Value (PPV),

Prec =
TP

TP + FP
(2)

• geometric accuracy,

Acc =
√
Sn ∗ Prec (3)
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Fig. 3. PEPPER, MCODE and ClusterONE performances. (A) Protein complexes predicted from 135 single Bait AP-MS experiments in Yeast. (B) Protein
complexes predicted from 9 single Bait AP-MS experiments in Human. The statistical significance is shown for comparison between MCODE and PEPPER as
well as ClusterONE and PEPPER (* : α = 5%)

• density which measures subgraphs connectivity degree

Density(V ) =
2|E|

|V |(|V | − 1)
(4)

where V and E respectively stand for the set of vertices
(proteins) and edges (interactions) in a graph.

2.3 Results
A gold standard of manually curated protein complexes was used
as a reference for Saccharomyces cerevisiae (Pu et al., 2009) and
Homo sapiens (Ruepp et al., 2008). Single bait AP-MS experiments
were obtained from a large-scale study in Yeast (Gavin et al, 2006)
and Human (Choi et al., 2010). For each experiment, the bait and its
associated set of preys were used as the seed list of proteins. Data for
Yeast was already a set of curated proteins. In Human, only high-
confidence proteins (SAINT score greater or equal to 99%) were
kept as a list of preys. In order to assess the quality of predictions,
only experiments for which a reference gold standard is available
were selected. To this end, seed lists were selected based on the
overlap with one of the complexes in the gold standard according to
two criteria:

• the seed should contain more than 5 proteins in the same gold
reference protein complex

• more than 50% of the seed should be contained in the same
reference complex

From this filtering, 135 and 9 lists of seeds were selected for Yeast
and Human respectively. The PPI networks used for the analysis
were the default Yeast Biogrid network (Stark et al., 2010) and the
HIPPIE database (Schaefer et al., 2012a) for Human.

Performances of our method are reported in Fig.3 alongside
with those of MCODE, ClusterONE and of the original list of
proteins used as seeds. Significant differences between PEPPER and

MCODE or ClusterONE were computed using Student’s two-sided
t-test with α = 5%. The higher performance of PEPPER is
statistically significant except for density and precision in Human
species. Moreover, unlike ClusterONE, MCODE identifies protein
complexes for only a small portion of the total number of proteins.
In Yeast, only approximately 40% of the proteins of the PPI
network (2,449 out of 5,968 proteins) where assigned to a predicted
complex whereas ClusterONE predicted a complex for nearly
80% of the proteins (4,742). The Human PPI networks being
less connected, these proportions drop to 17% for MCODE and
36% for ClusterONE. Therefore, many seed lists of proteins that
can be assigned to a known protein complex cannot however be
mapped to an MCODE predicted complex. The results obtained
with PEPPER in Yeast or Human always showed an increase
in all of the classification performance measures as compared
to the original list of proteins or to the two tested methods.
Interestingly, this increase in performance is associated with an
increase of the density in Yeast. In Human, however, ClusterONE
and PEPPER find protein complexes with very similar densities.
Yet, PEPPER significantly outperforms ClusterONE with an average
increase of 16% in accuracy and of 30% in sensitivity. These
results suggest that extracting solutions solely based on optimising
topological measures can be improved by integrating the context
specificity of real experimental data.

3 CASE STUDY
An example of usage of PEPPER is shown in Fig. 4 for a particular
application on the Human protein WDR92.

3.1 Input data
The experimental results of an AP-MS assay performed using
WDR92 as a bait protein were obtained from a previously published
study (Choi et al., 2010). From the raw list of proteins identified in
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Fig. 4. A view of the user interface of PEPPER in Cytoscape and the application to the WDR92 case study. (A) Necessary inputs are the organism (with default
PPI networks for Human, Yeast and Mouse) and the list of seed proteins. (B) The predicted protein complexes, including first the final merged solution then
all the Pareto optimal solutions and its union, are directly visible in the first tab of the result panel. The second tab shows the results of the post-processing
scores including (C) topology feature differences when considering extracted subgraphs without or with PEPPER expansions, (D) occurrence of proteins of
the solutions in reference protein complexes and (E) enriched GO terms. The set of proteins of a given solution that co-occur in a particular reference protein
complex or are annotated with a specific GO term, are highlighted clicking on the annotation of interest in the result panel. The network formed by adding
known interactions between proteins of the seed list (F) and between the proteins predicted by PEPPER to form a complex (G) are visible at the end of the run.
Green nodes are prey proteins, the squared purple node is the bait and hexagonal nodes are expansions predicted by PEPPER with a colour code (light to dark
red) increasing with significance. Green edges represent interactions between seed proteins whereas red edges connect expansion proteins added by PEPPER,
both originating from the input PPI network.
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the assay, 10 high confidence prey proteins (SAINT score greater or
equal to 99%) were selected (list available as Supplementary File).
In all, 8 interactions were found between all the proteins identified
by the assay and three of the preys (ACTB, CCAR1 and MYBBP1A)
were not connected to any of the other preys.

3.2 Main prediction results
From the seed list, PEPPER generated a consensus subgraph
covering 75% of the initial seed proteins with density and
modularity values of respectively 0.47 and 0.032 (Fig. 4B). The
complex predicted by PEPPER and the original network built from
the seed list are shown in Figure 4F-G. PEPPER predicted three
expansions: RUVBL1, RUVBL2 and MAP3K3.

The expansion proteins predicted by PEPPER greatly increased
the connectivity of the initial solutions, which was measurable
for several topological features described in Section 1.3 (example
of the clustering coefficient in Fig. 4C). For instance, degree
and modularity values showed more than a two-fold increase.
The expansions also slightly increased the overall subnetwork
closeness centrality. Finally, the clustering coefficient was more
than three times higher with than without expansions. Proteins
added by PEPPER significantly affected the apparition of cliques
(fully connected components) in the subnetwork, thus increasing the
complex connectivity.

No protein complex was found to be associated with the
original list of seed proteins. Matching PEPPER’s predictions to
the reference protein complexes resulted in 56 mapped known
complexes when considering all solutions (Fig. 4D). Among
these, 43 were found to overlap with at least one protein of the
final solution. The best matching complex was the URI complex
(Unconventional prefolding RPB5 Interactor) with a matching
score of 0.1481, associated to two of the seed proteins and two
of the expansions. While the interpretation necessitates further
experiments to validate whether this complex is formed in the
studied system, PEPPER provides directions for validation by
prioritizing the candidates.

Among the significantly enriched cellular processes, several
functions related to histones acetylation and methylation were found
and respectively linked to RUVBL1/2 (expansions) and WDR92
(bait) proteins. Annotation of proteins and their cellular localisation
provided information about the possible localisation of the complex
in the nucleus, which is consistent with the putative association with
the URI complex and the possible function in histone modifications
(Fig. 4E).

Finally, expansion proteins were found with post-processing
scores of 0.21 for MAP3K3 and 0.42 and 0.44 respectively for
RUVBL2 and RUVBL1 proteins. RUVBL1 actually appears as a prey
protein of WDR92 with a very low number of unique peptide (only
one) and a low SAINT score (0%) and therefore did not pass the
detection threshold. Furthermore, AP-MS using both RUVBL1 and
RUVBL2 also identified WDR92 as a prey. Altogether, these results
strongly suggest that WDR92 forms a complex with both of these
proteins predicted as expansions by PEPPER.
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