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Supplementary information, Data S16 Supplementary materials and methods 

 

1 Sample collection  

Blood or tissue samples were obtained from 12 gray wolves (8 blood samples and 4 

tissue samples), 27 village dogs (24 blood samples and 3 tissue samples), 19 breed 

dogs (16 with blood and 3 with tissue samples), and 1 dhole as an outgroup (Cuon 

alpinus). The geographic distribution of these individuals is shown in Figure 1A and 

Supplementary information, Table S1.   

 

Of the wolves, 9 gray wolves are from China (Xinjiang, Shanxi, and Inner Mongolia), 

and 3 from Russia. 27 indigenous/village dogs are from East Asia and Africa. Among 

these 27 individuals, 11 are from Southern East Asia, 12 from northern East Asia, and 

4 from Nigeria.  

 

The 19 breeds are AFG, Afghan Hound; SLO, Sloughi; BEM, Belgian Malinois; CHI, 

Chihuahua; FIL, Finnish Lapphund; GAL, Galgo; GNE, Gray Norwegian Elkhound; 

GSD, German Shepherd Dog; JAM, Jamthund; LAH, Lapponian Herder; MEN, 

Mexican Naked (hairless); PEN. Peruvian Naked (hairless); SWL, Swedish 

Lapphund; SAM, Samoyed; ESL, East Siberian Laika; SIH, Siberian Husky; ALM, 

Alaska Malamute; GRD, Greenland dogs, and TIM, Tibetan Mastiff. 

 

Of the 58 individuals, 10 individuals were sequenced in a previous study 

(Supplementary information, Table S1). Sample locations for the dogs and wolves are 

shown in Figure 1A, and Supplementary information, Table S1.  

 

2 DNA library construction and sequencing. 

Total genomic DNA was extracted from blood or tissue samples using the 

phenol/chloroform method. For each individual, 1-3 µg of DNA was sheared into 

fragments of 200–800 bp with the Covaris system. DNA fragments were then 

processed according to the Illumina DNA sample preparation protocol: fragments 
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were end-repaired, A-tailed, ligated to paired-end adaptors and PCR-amplified with 

~500 bp inserts for library construction. Sequencing was performed on the Illumina 

HiSeq 2000 platform, and 100-bp paired-end reads were generated.  

 

3 Sequence data pre-processing and variant calling 

Raw sequence reads (fastq format) were mapped to the dog reference genome 

(Canfam3, downloaded from the UCSC genome browser) with the Burrows-Wheeler 

Aligner (BWA, Version 0.6.2-r126)25. Reads with identical start/end points were 

dumped with PICARD (Version 1.87) and subsequently locally realigned and base-

recalibrated using the Genome Analysis Tool Kit (GATK, Version 2.5-2-gf57256b)3.  

 

Individually generated BAM files were then conjugated to call variants using the 

UnifiedGenotypeCaller from the GATK package. Raw variants were then recalibrated 

using the Variant Quality Score Recalibration (VQSR module). During the base and 

variant recalibration, a list of known SNPs/indels were downloaded from the Ensembl 

database (ftp://ftp.ensembl.org/pub/release-73/variation/vcf/canis_familiaris/) and 

were used as the training set. Small indels were separately called using the SAMtools 

mpileup.  

 

4 Genetic diversity, linkage disequilibrium and structure analysis 

Beagle was used to impute the missing genotypes and phase the genotypes into 

associated haplotypes26. Genetic diversity for each individual as well as for several 

sub-groupings was calculated using a custom python script. Linkage disequilibrium 

for different populations was calculated using the haploview software (Version 1.2)27. 

Variants with minor allele frequencies less than 0.05 were filtered before the LD 

calculation. Population structure analysis was done using the EM algorithm 

implemented in the Frappe package (Version 1.1)28. Before the Frappe analysis, 

variants were first thinned to be at least 50kb in distance from nearby SNPs. Principle 

component analysis was carried out using the smartPCA program in the Eigensoft 

package (Version 4.2)19.      
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5 Mutation rate estimation using comparative genomic data 

In order to determine the long-term mutation rate, we extracted whole genome 

alignment data for 15 eutherian mammals from the Ensembl database 

(http://asia.ensembl.org/info/genome/compara/analyses.html#ancestral). Human was 

used as the outgroup and sister species (cat, horse or cattle) were chosen for dogs. For 

each possible sister species, we did a three species comparison (Human, (dog, 

sister_species)) by extracting information from the multiple species alignment. The 

branch length along the dog lineage was estimated using the baseml package in the 

PAML package (Version 4.7)29. The long term evolutionary of rate along the dog 

lineage is then calculated using the branch length divided by species divergence time 

between the sister species and dog. Between species divergence time is extracted from 

Hedges 200230.  

 

6 Population demography 

Population level admixture analysis was first carried out using the TreeMix program 

(Version 1.12)31. Allele count data for each SNP was first extracted and subsequently 

ported to the TreeMix program. Admixture analysis was conducted by allowing a 

number of migration tracks. An alternative way of inferring the admixture histories 

for multiple populations is the F3/F4 test6. The threepop/fourpop module from the 

TreeMix package is used to carry out the F3/F4 test.  

 

Pairwise Sequentially Markovian Coalescent (PSMC) model was used to estimate the 

population histories from individual genomes using the PSMC package32. Because 

sequence coverage is an important factor in determining the inferred population sizes, 

a correction factor is invoked to correct for the false negatives in SNP calling. This 

correction factor is inferred by creating datasets with a series of different coverages 

and finds the values to recover the true curve (high coverage result).  

 

The joint site frequency spectrum between wolves and the South Chinese Indigenous 
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dogs was used to infer the population history with the dadi package (Version 1.6.3)33. 

The joint site frequency spectrum for indigenous dogs and wolves was extracted 

following these steps: a) first, genotypes with qualities less than 18 (corresponding to 

roughly 30 in samtools, i.e. 0.1% error rates) were masked. b) The remaining site 

frequencies were then projected down to low dimensions. For example, from 

(wolf_samplesize=24, dog_samplesize=22) to (16, 16) using the dadi package. A wide 

range of projections were tried in parallel. c) Lineage specific substitution matrix was 

estimated using the ambiore package (Version 1.0)34 with the whole genome sequence 

alignments between the dhole (Supplementary information, Table S1) and dog 

genome. This information is then used to estimate the lineage specific substitution 

matrix. d) A corrected site-frequency spectra (SFS) was then used to perform the 

demographic inference.   

 

Because the ancestral population of wolves might not be at equilibrium, we allowed 

the wolf population to start changing continuously from an equilibrium population at 

some time in the past (T1).  During the continuous change (i.e. from T1 to now), at 

some more recent time T2, dog population splits off and start to change continuous 

from size one (S1) to the end size (S2) (Figure 2C). 

  

Bayesian analysis on species evolutionary history was conducted using both the BPP 

(Version 2.2) and G-PhoCS package (Version 1.2.2) independently12, 13. First, 

noncoding regions of 500bp length were first extracted from the genome-wide data (at 

least xkb distance away from nearest coding regions. We tried a variety of distances 

including 10-100kb). Because of the computational burden, this large set was 

subselected into smaller subsets (500 loci -3000loci) before the Markov Chain Monte 

Carlo method was carried out. The difference between BPP and G-PhoCS is that, G-

PhoCS can allow migrations to happen between populations, while BPP doesn’t allow 

for any gene flow between populations.  

 

Population admixture time was conducted using the HAPMIX program (Version 
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1.2)35. We used the Southern Chinese indigenous dogs and the breeds as the two 

source populations. The program will give maximum likelihood estimates on the 

admixture time for each individual. The genetic distances between SNPs were 

extracted from a previous published genetic map36. The overall admixture time is 

inferred by maximizing the likelihood combing the likelihood values from all the 

individuals.  

 

7 Targets of positive selection 

The SweepFinder algorithm was used to extract regions of the genome that show the 

strongest signal of positive selection24. The genome-wide site frequency spectrum is 

used as the background site frequency distribution before fitting a sweep model to the 

data. In order to leverage all the samples (not just the Southern Chinese indigenous 

group), the genetic diversity and Fst values were also used to extract top candidate 

signals. We first calculated the mean Fst value and diversity ratio (wolf/dog) for each 

window (50kb stepping at 20kb). We then filtered target-selected regions by requiring 

both measurements to be in the top 2% of each distribution. Gene Ontology (GO) 

analysis was carried using the DAVID37 and phenotypic enrichment was conducted 

using GeneDecks programs available at the genecards website (www.genecards.org). 
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