Supplementary materials

Supplementary material 1: Image processing (pre-processing and feature extraction)

Before any features can be extracted from the images, a number of pre-processing routines have
to be performed on the image. This is done in order to standardize the images for feature
extraction.

Pre-Processing

The first pre-processing technique is to remove the black sides in the image. This is done through
the cropping function. Cropping involves searching for the first non-black pixel from each side
and marks it as the cropping index. The image is then cropped by keeping only the part of the
image that lies within the boundaries of the cropping indices. Figure 1 shows the boundary lines.

Figure 1. Image showing lines where the figure will be cropped, (image altered from Laurent, 2014)

The next pre-processing technique to be applied is the size standardization of all the images.
After analyzing all the images, it was found that no image was smaller than 500 x 500 pixels.
Through a random equal number estimation, the normal size that all images should be resized to
was chosen as 486 x 486 pixels.

Feature Extraction

A number of methods were developed in order to extract the features in table 1 (main article).
These feature extraction methods are discussed below.

a) Main Color Analysis

Because different symptoms exhibit different colors, color analysis of the entire image is
performed to evaluate the color of each diagnostic category. It is performed by extracting the red,
green and blue (RGB) color bands, as seen in figure 3, from the image in figure 2. Each extracted
band has the same dimension as the original image (486 x 486 pixels) with each pixel
represented by a single value between 0 and 255, hence the grey appearance. After RGB
extraction, the average value of all the pixels in each color band is calculated. The average mean



for each of the RGB channels, as well as difference between each mean is calculated. Figure 4 a)
to ) show the colors resulting from the averaged RGB channels for each diagnosis.

b)
a)
Figure 3 a) Extracted red band; b) Extracted green band; ¢) Extracted blue band

a) b) ©) d) e)

Figure 4 a) Average color of AOM; b) Average color of CSOM with perforation; c) Average color of
Normal tympanic membrane; d) Average color of OME e) Average color of O/W

b) Tympanic Membrane (TM) Color Analysis

In order to determine whether the TM is opaque (normal) or red (inflamed) the image must first
be cropped (figure 5 a) so as to use only the TM part of the image. In order to crop this image the
center of the image must be calculated (figure 5 b) . The image is then cropped to a circle with a
radius of 200 pixels (figure 5 c). This results in a black band of 43 pixels on all four sides of the
image, which is subsequently removed using the cropping function explained in the
pre-processing section (figure 4 d).



A red threshold is applied to the image in order to filter out all non-red colored pixels. From this
image the percentage red can be determined. This procedure is followed for all the images to
define an abnormal red percentage threshold in the TM. A threshold of 17% for the allowable
amount of red in an image was chosen based on the analysis.

c) d)
Figure 5 a) Original Image; b) Center and radius of the image shown; ¢) Image cropped; d) Image with
the black sides removed (Laurent, 2014)

d) Wax Detection

In order to determine the amount of wax in the ear canal, a color filter is applied. This is done by
extracting the hue, saturation and value (HSV) bands from the image and applying a yellow
threshold to each band. This filter will only allow all the yellow parts of the image to be visible,
while all the non-yellow parts are filtered out of the image in figure 6, as shown in figure 7. This
makes it possible to determine the percentage wax in the image.

Analysis was performed on all the images to define an abnormal threshold of wax in the external
ear canal. A threshold of 12% for the allowable amount of wax in an image was identified.

Figure 6. Original RGB wax obscured ear canal (Laurent, 2014)
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a) b) ©)
Figure 7 a) H band extracted from image; b) S band extracted from image; c) V band extracted from
image

e) Obstructive Wax Detection

An image has obstructive wax when visibility of the TM is obscured. The same procedure to
crop out the TM, as explained for wax detection, is followed. The cropped image is then used in
the same manner as mentioned above to determine if there is an abnormal amount of wax in the
image. The resulting filtered image is shown in figure 8. The allowable wax threshold was
chosen to be less than 20%.

Figure 8. An example of effect of obstructive wax detection, image altered from (Laurent, 2014)

f) Perforation Detection

A perforation in the TM is seen as a hole in the ear drum, with clear edges. Edge detection is
therefore used to detect if there is a perforation. It was found that most images, when used in its
original form, exhibited too many anomalies and interferences when edge detection was applied.
The anomalies and interferences were filtered out by extracting the saturation band (in set of
HSV bands) from the image, and performing edge detection on this band only. If a circular shape
is detected, the image will be classified as having a perforation, as seen in figure 9 and figure 10.



Figure 10 a) Saturation band extracted from the image; b) Edge detection applied to the saturation band

g) Fluid Detection

Fluid presents itself as either a “white mass” or as bubbles behind the TM. In order to determine
the presence of fluid behind the TM, the saturation band is again extracted from the image. A
brightness filter applied to the saturation band will indicate if there is a “white mass” behind the
TM, making it possible to calculate the amount of white in the image. Analysis was performed
on the images that had a non-zero white score, to determine the threshold of an abnormal
percentage white in the image. The threshold was set at 70000 pixels. Another method for
determining fluid behind the tympanic membrane is to use edge detection on the image. If a
collection of small circles is detected in the TM, the middle ear most likely contains fluid.

h) Shape Detection

In order to categorize the shape of the TM as retracted, normal, bulging or irregular, a norm first
needs to be established. Cropping is done on the image as described for TM color analysis. The
image is then converted to a grey scale image, where after the difference in greyness between
neighboring pixels is calculated and noted as the gradient of that pixel. This is done by
comparing each individual pixel with the one to the right of it. Figure 11 shows the result of



gradient analysis, displaying the image gradients in 3D. After the entire image is completely
analyzed, the mean of these gradient values is calculated.

Analysis was performed in order to find the most accurate range for each category (retracted,
normal, bulging or irregular). These results can be seen in table S1-1.

Table S1-1. The ranges for each shape category shown

Category Range
Retracted x £9
Normal 9 < x <11
Bulging 11 <x<15
Irregular x 215

Figure 11 a) An image of CSOM with perforation showing the gradient analysis; b) A normal TM image
showing the gradient analysis

1) Reflection Detection

The reflection in the image is caused by the reflection of the light from the otoscope on the
surface of the TM. Reflections in the normal category images appear close to the center of the
image, which necessitates cropping of the image. In fact, the reflection never appears within 30%
from the sides of the image as shown in figure 12 a. A brightness filter is applied to the image,
allowing only white and near white pixels to be visible in the filtered image. This makes it
possible to determine if there is a reflection in the image (figure 12 b). Analyses were performed
by calculating the percentage of white in each image, in order to determine the threshold to
detect whether the cropped and filtered image contained a reflection. From the analysis it was
established that a small range is required to ensure that the diagnosis is accurate. The range was
chosen as between 1 and 9 percent of white in the cropped image, due to the fact that most of the
normal diagnosed images fell into this range.



a) b)

Figure 12 a) Image showing the boundaries for a reflection on a normal TM; b) Reflection shown in the
cropped image, (images altered from Laurent, 2014).

j) Malleus Handle Visibility Detection

A brightness filter, similar to the one described for reflection detection, is applied in order to
detect whether the malleus handle is visible or not. After the filter is applied, circle detection is
performed to detect whether there are any bright circular areas in the remaining image. Moving
circles detect the circular brightness with different radii across the image to determine if it
correlates with similar shapes in the image. The circle detection only allows one bright circle to
be detected. If multiple circles are detected, however the image will not be classified as having a

visible malleus handle. This is done to avoid overlapping features between the malleus bone and
fluid.



Supplementary material 2: Classification methods including the decision tree structure

Artificial intelligence is defined by Poole and co-workers' as the design and study of intelligent
agents. In order to diagnose the various forms of otitis media present in the images, a suitable
artificial intelligence technique, namely a decision tree was used to classify the images as
belonging to one of these diagnostic groups. In order for the decision tree to make an accurate
diagnosis, the predefined diagnostic features associated with each diagnosis had to be accurately
identified in the images by the feature extraction methods described in Supplementary material 1.

To classify an image of unknown diagnosis, the image is provided as input to the
image-analyzing classification system, where after pre-processing and feature extraction are
performed. Once all the features are extracted, the image can be classified using the feature
vector of that image. The output, which consists of the extracted features as well as the final
diagnosis, is then presented to the user as an output window on the notebook screen.

Training example feature vector generation

Before an undiagnosed image can be classified, the decision tree needs to be constructed from
the pre-diagnosed example feature vectors obtained from the images. In order to construct a
decision tree, example feature vectors with their corresponding diagnosis have to be created from
the diagnosed images. For each image in the example training set, the image processing
algorithms receive a diagnosed image as input, and run it through the pre-processing and feature
extraction processes. After the image processing algorithms are complete, an array containing
each image's symptoms (or features) with the corresponding known diagnosis is produced as
output. This process is depicted in figure 1. The feature vectors produced by the image
processing algorithms (one feature vector per image) and the corresponding known diagnoses are
used as "examples" to construct the decision tree with. The more examples available, the more
accurate the decision tree will be able to represent the problem space, implying a more accurate
classifier and hence giving a more reliable diagnosis.

= Diagnosis
Image with known _ - Colour of Tympanic Membrane
diagnosis — Shape of Tympanic Membrane
- Perforation Detected
- Reflection Detected
- Malleus Bone Visible
- Wax Detected
" Obstruction Found

* Main Colour of Image
- Fluid detected

Figure 1. Training feature vector generation



Decision Tree Construction

The decision tree was constructed by continuously dividing the input variables (feature vectors),
or examples, produced by the feature extraction algorithms, based on an attribute value test
according to Quinlan'?. This division of examples ensures that the examples that are the least like
the feature will eventually be eliminated in order to ensure that the best fit is found. The most
common attribute value test is one where the entropy of each attribute is calculated over all
examples in the training data set.

The entropy is a measure of uncertainty, while one minus the entropy is a measure of certainty,
or potential information gain. Therefore, if the entropy of an attribute is low, the potential
information gain from evaluating that attribute is high. It therefore makes good sense that
attributes exhibiting lower entropy (less uncertainty, higher information gain) should be
evaluated first, followed by the attribute with the second lowest entropy, and so forth (Norvig
and Russell?). This will ensure that classification is performed in the least possible time, as no
unnecessary paths in the decision trees will be explored.

Calculating the entropy of each attribute and ranking the resulting entropies in increasing order is
required to determine the order of attribute evaluation and node expansion. The attribute
exhibiting the lowest entropy will be placed at the top of the decision tree, followed by the
second, and so forth. The decision tree is populated from the top down with the nodes
representing attributes (in this case the features produced by the training algorithm for each
processed image). Each attribute may have multiple states or discrete values, while continuous
variable attributes have multiple predefined ranges. A decision tree creates new branches by
evaluating, or “splitting” on the attribute where there is the least uncertainty, or that will lead to
the greatest loss of entropy (or the largest information gain), thereby eliminating irrelevant
training examples from the training set. This process is repeated until either all the nodes are split
or when the splitting of nodes becomes irrelevant to the diagnosis. Following this procedure will
ensure a compact decision tree with a low average branching factor, i.e. the average number of
branches created by evaluating features using the attribute value test, which in turn will result in
low computational complexity, ultimately ensuring classification in the least possible time.
Figure 2 shows the resulting decision tree.

The entropy H(f) of a particular feature f is calculated by
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where N is the total number of examples in the training set, J is the number of discrete values (or
ranges) that the feature can assume (of fall in), N? is the total number of examples associated
with a given discrete value (or range), / is the total number of classes (or diagnoses), and n,¥ is
the number of examples classified as belonging to class i where the feature is associated with
discrete value or range j from a total number of J ranges.



Once the decision tree has been constructed using the training example feature vectors plus their
corresponding diagnosis (figure 1), it can be used to classify or diagnose unknown images
(images that have not been part of the training set). As was done during the example feature
vector generation, the image processing algorithms (pre-processing and feature extraction) are
used to analyze the input image, and produces a feature vector as before, but now without a
known diagnosis. This feature vector is then used to traverse the decision tree from the top, by
testing the feature or attribute values against the corresponding values in the decision tree.
Following this process iteratively will result in one unique path through the decision tree, which
will terminate at one unique diagnosis, depicted by the green nodes in the decision tree in figure
2. Classification is complete once a diagnosis is determined, i.e. when there is only one obvious
diagnosis to choose from according to Norvig and Russell*.
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Supplementary material 3: The custom-made video-otoscope

As part of this work, a low cost video-otoscope was designed as a possible replacement for
current, rather expensive video-otoscopes available on the market. The illumination circuitry was
simplified to only a battery, a Smm light emitting diode (LED) (maximum current of 100 mA;
typical operating current of 20-30 mA, forward voltage of ~3.2 V) and a resistor. A number of
resistors were experimented with to find the correct light intensity. With a 100 Ohm resistor the
image was very light and the tympanic membrane was difficult to interpret ((9-3.2)/100=58 mA).
With a 3 kOhm resistor the image was very dark and the tympanic membrane could not be seen
((9-3.2)/3000=1.93 mA). Using a 1 kOhm resistor the image was correctly displayed
((9-3.2)/1000=5.8 mA). The designed circuit can be seen in figure 1, below.
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Figure 1. [llumination circuit for the otoscope

The current in the circuit is very small (5.8 mA) and poses no possible harm to a human. Since
the video-otoscope was custom-designed, several experiments had to be performed and
adjustments had to be made in order to get the best quality image and to ease the process of
image pre-processing and feature extraction. No lens was used to save cost. The camera was a
SEN-12804 JPEG 2 megapixel color camera with a serial transistor-transistor logic TTL
interface, with a resolution of 1600x1200 and a frame rate of 15 frames per second (fps). The
price of only the camera was 895 Rand ($54).

USB Communication

The USB communication was implemented to communicate from the custom-made
video-otoscope to the notebook computer in the form of an AV-to-USB converter. The camera’s
output was connected to the audio/video (AV) cable of the converter, while the USB output of
the converter was connected to the computer. This converter can be seen in figure 2 below.
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Figure 2. AV-to-USB converter cable

The video-otoscope shell

The shell of a commercial ear-cleaning product was used as the body of the otoscope. The
package of this ear cleaner can be seen in figure 3.
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Figure 3. VAClear ear cleaning product obtained from a local “Dischem store” (South Africa)

The front part of the custom-designed video-otoscope was removed to make space for the camera
and disposable ear tips. Figure 4 shows the shell of the video-otoscope together with its
components. The three state switch that was obtained from the ear cleaner was reused as the on-
and -off switch for the LED.

Foam Holder
Bright LED

AV Output Cables
3 Point Switch
AV to USB

Converter

Otoscope Shell

TSR srimtotof ==seascssaossresuns

Figure 4. The exterior shell of the video-otoscope
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A video-otoscope may carry germs from one person’s ear to another. In order to avoid spreading
of infections, a disposable ear tip was attached. The disposable ear tip was not only used to
prevent contamination, but also to get a better view inside the ear canal. The tip was connected to
the video-otoscope with the use of a rubber packing glued onto the front opening. The packing
was cut to the exact inside diameter of the disposable ear tip. Another circle was then cut into the
washer to make space for the camera. The packing tightly holds the disposable ear tip to prevent
it from falling off while capturing images of a patient’s ear. The disposable ear tip mounted to
the shell is displayed in figure 5.

Disposable otoscope

ear tips

Figure 5. The exterior design of the video-otoscope showing the disposable ear tip.

Video-otoscope content

The video-otoscope was opened in order to determine the space available for all the circuitry.
The circuitry was fixed into the otoscope. The 9V battery and bright LED that was fixed to the
foam washer as well as the 100 k€ resistor are shown in figure 6. The final product is shown in
figure 7 and 8.
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Otoscope Shell -
Camera

Bright LED
10012 Resistor

3 Point Switch -

9V Battery ---

Battery Connector _
Opening to remove ~
battery

Figure 7. Side view of the final product Figure 8. Front view of the final product

The custom-made video-otoscope is able to allow the removal and replacement of batteries, as
can be seen in figures 9 and 10. This can be done by opening and closing a battery holster made
of a piece of Velcro® fabric.
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Figure 9. The closed battery holster Figure 10. The open battery holster

The custom-made video-otoscope captures an image and sends it to the notebook computer via
the USB communication. Once the image is loaded into the computer it can be image-processed
and classified by the image-analysis classification system as belonging to one of the five
diagnostic groups.
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