

b

Southern blotting

С

Supplementary Figure 1 Generation of Pgam5 knockout (KO) mice.

Supplementary Figure 2

The expression levels of several genes related to adaptive thermogenesis in Pgam5-KO-micederived brown adipose tissue (BAT) are comparable to those in Wt mice.

Supplementary Figure 3

Almost all the gene expression levels related to lipid metabolism in Pgam5-deficient BAT were comparable to those in Wt mice.

b

Supplementary Figure 4 The enhancement of lipid metabolism is not induced downstream of FGF21 induction.

а

Supplementary Figure 5 Under high fat diet (HFD)-fed condition, serum FGF21 level is not enhanced in Pgam5 KO mice.

1 Supporting Information Figure legends

2 S1 Figure.

3 Generation of Pgam5 knockout (KO) mice.

4	(a) A schematic representation of the targeting vector and the targeting allele of the Pgam5 gene
5	The coding exons are depicted by orange boxes. Probes for Southern blot analysis are shown as
6	blue and green lines. Scal I, SpeI, restriction enzyme site; PGKp, phosphoglycerate kinase 1
7	promoter; neo, neomycin-resistant gene cassette; tk, thymidine kinase. (b) Genotyping of F1
8	mice (left panels) and homozygous mice (right panel). Genomic DNA extracted from mouse
9	tails was examined by Southern blotting and PCR. The WT and mutant alleles were detected as
10	10.6- and 6.6-kb bands by the 5' probe and 16.6- and 10.6 kb bands by the 3' probe in Southern
11	blotting and as 179- and 279-bp in PCR. (c) An immunoblot of PGAM5 in the primary cultured
12	cells that were derived from WT and Pgam5 KO mice. MSF, mouse skin fibroblasts; MEF,
13	mouse embryonic fibroblasts; BMDM, bone marrow-derived macrophages.

14

15 **S2 Figure.**

16 The expression levels of several genes related to adaptive thermogenesis in Pgam5

17	KO-mice-derived brown adipose tissue (BAT) are comparable to those in WT
18	mice.
19	(a) Expression of the indicated genes in BAT from WT and Pgam5 KO mice under basal
20	conditions or at 6 h of cold exposure after 12 h of fasting, as determined via quantitative
21	RT-PCR (n=4). (b) Representative immunoblots for the indicated proteins derived from WT and
22	Pgam5 KO mice under basal conditions or at 3 and 6 h of cold expose after 12 h of fasting. Data
23	are expressed as the mean±SEM, **p<0.01, *p<0.05; two-way ANOVA/Bonferroni post-test
24	(a).
25	
26	S3 Figure.
27	Almost all the gene expression levels related to lipid metabolism in
28	Pgam5-deficient BAT were comparable to those in WT mice.
29	(a, b, and c) Expression of the indicated genes related to lipid transporters (a), lipolysis (b), and
30	β -oxidation (c) in BAT from WT and Pgam5 KO mice under basal conditions or at 6 h of cold
31	exposure after 12 h of fasting, as determined via quantitative RT-PCR . Data are expressed as
32	the mean±SEM (n=3-6).

33 S4 Figure	33	S4 Figure.
--------------	----	------------

34	The enhancement of lipid metabolism is not induced downstream of FGF21
35	induction.
36	(a and b) After fasting for 12 h, WT and Pgam5 KO mice were treated with 2.5 mg/kg body
37	weight ISRIB or mock i.p. and subsequently exposed to cold stress. After 5 h, the triglyceride
38	(TG) levels in the serum (a), and <i>Elovl3</i> gene expression in BAT (b), was determined. Data are
39	expressed as the mean±SEM (WT; n=4 for each, Pgam5 KO; mock n=3, ISRIB n=4).
40	
41	S5 Figure.
42	High-fat-diet (HFD)-fed conditions do not enhance serum FGF21 levels in Pgam5
43	KO mice.
44	The serum FGF21 concentration of WT and Pgam5 KO mice that were fed a HFD for 15 weeks
45	was quantified by ELISA. Data are expressed as the mean±SEM (n=6 each), **p<0.01;
46	unpaired Student's t-test.
47	
48	
19	