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Figure S1 SEM images of the (a) as-spun Fe(acac)3–PAN–PS composite nanofibers 

and (b) stabilized nanofibers treated at 120 oC under air atmosphere. 
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Figure S2. XRD patterns of the nanofibers obtained after stabilization process, 

subsequent reduction process, and final selenization process. 
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Figure S3. Energy dispersive spectroscopy (EDS) of the hollow nanosphere 

FeSe2@GC–rGO hybrid nanofibers formed by selenization process.  
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Figure S4. Raman spectrum of the hollow nanosphere FeSe2@GC–rGO hybrid 

nanofibers formed by selenization process.  
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Figure S5. XPS spectra of the (a) Fe-rGO-GC hybrid nanofibers and (b-d) hollow 

nanosphere FeSe2@GC–rGO hybrid nanofibers: (a,b) Fe 2p, (c) Se 3d, and (d) C 1s.  
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Figure S6. TG curve of the hollow nanosphere FeSe2@GC–rGO hybrid nanofibers 

obtained after selenization process. 
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Figure S7. Morphologies and XRD pattern of the bare Fe2O3 nanofibers obtained 

after oxidation process of the Fe(acac)3–PAN-PS composite nanofibers under air 

atmosphere at 500 oC: (a) SEM image, (b,c) TEM images, and (d) XRD pattern. 
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Figure S8. Morphologies, SAED pattern, XRD pattern, and elemental mapping 

images of the bare FeSe2 nanofibers: (a) SEM, (b,c) TEM images, (d) HR-TEM 

image, (e) SAED pattern, (f) XRD pattern, and (g) elemental mapping images. 
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Figure S9. (a) N2 gas adsorption and desorption isotherms and pore size 

distributions of (b) hollow nanosphere FeSe2@GC–rGO hybrid nanofibers, (c) 

nanorod FeSe2-rGO-AC hybrid nanofibers, and (d) bare FeSe2 nanofibers. 
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Figure S10. CV curves of the (a) nanorod FeSe2-rGO-AC hybrid nanofibers and (b) 

bare FeSe2 nanofibers.  
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Figure S11. First charge-discharge curves of the hollow nanosphere FeSe2@GC–

rGO hybrid nanofibers and nanorod FeSe2-rGO-AC hybrid nanofibers at a current 

density of 50 mA g-1. 
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Re : the electrolyte resistance, corresponding to the intercept of high frequency 

semicircle at Zre axis 

Rf : the SEI layer resistance corresponding to the high-frequency semicircle 

Q1 : the dielectric relaxation capacitance corresponding to the high-frequency 

semicircle 

Rct: the denote the charger transfer resistance related to the middle-frequency 

semicircle 

Q2 : the associated double-layer capacitance related to the middle-frequency 

semicircle 

Zw : the Na-ion diffusion resistance 

 

Figure S12. Randle-type equivalent circuit model used for AC impedance fitting. 

 


