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I. PATH INTEGRAL DERIVATION OF ENERGY-TIME QUANTIZATION

Suppose that we have a quantum system with Hamiltonian H and corresponding classical action S. Let the
eigenstates of H be |E⟩. Then the propagator U(x, x′; t) obeys

U(x, x;T ) =
∑
E

|⟨x|E⟩|2e−iET (1)

Computing the propagator in the path integral instead, we can make a semiclassical approximation and assume that
the only paths which contribute are those paths xcl(t) which start at x and return there in time T according to the
classical equations of motion. In this approximation, we get an alternative expression for the same function:

U(x, x;T ) ≈ N
∑
xcl(t)

eiS[xcl(t)] (2)

where N is a prefactor irrelevant to us.
Now come the main assumptions. Inspired by the free particle in a magnetic field, for which these assumptions

definitely hold, assume that there are no nonstationary closed classical paths except when T = nT0 where T0 is some
classical period. Furthermore, we assume that each classical path at T = nT0 is just n loops of a single closed orbit
xα(t) which traverses the loop once in time T0. In this case, absorbing any prefactors into N ,

U(x, x;T ) ≈ N
∑
α

∑
n

einS[xα(t)]δ(T − nT0) (3)

= N
∑
α

∫
dωe−iωT

∑
n

ein(ωT0+S[xα]) (4)

= N
∑
α,m

∫
dωe−iωT δ(ωT0 + S[xα]− 2πm) (5)

Comparing to the exact propagator Eq. 1, we see then that energies are labeled by m and α and are given by

Em,α =
2πm− S[xα]

T0
(6)

This implies the energy-time quantization condition in Eq. 2 in the main text, but also tells us more. Here S[xα]
explicitly depends on the in-field Hamiltonian and thus the zero of energy for the Landau levels, so Em,α is automat-
ically defined relative to the same zero. In particular, if we assume T0 ∼ 1/B, then in deriving a condition like Eq. 1
in the main text the energy µ must be defined relative to the Landau level spectrum, which need not coincide with
the natural zero of energy for the B = 0 band structure.

II. QUANTUM OSCILLATIONS FROM ENERGY-TIME QUANTIZATION

In this section, we compare the quantum oscillations from the two different perspectives of energy-time quantization
and phase-space quantization. The phase-space quantization gives the condition of the allowed semiclassical orbits:∮

(k⃗ − eA⃗) · dr⃗ = 2π(n+ γ) (7)
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where the integral is over a constant energy contour in k-space at certain chemical potential µ. With the semiclassical
equations of motion, this can be re-written as:

ℓ2BSk =
ℓ2B
2

∮
k⊥dk∥ = 2π(n+ γ) (8)

where k⊥ and k∥ are the wave vectors normal and parallel to the constant energy contour, respectively, Sk is the

enclosed k-space area and ℓB = 1/
√
eB is the magnetic length.

On the other hand, consider a dispersion ε(k⃗) in two dimensions, the time needed to complete a cyclotron orbit at
energy εn is

t = ℓ2B

∮
dk∥

v⊥(k⃗)
(9)

where v⊥ is the Fermi velocity perpendicular to the contour. The energy-time quantization states that (εn − µ0) t =
2π(n+ γ), which suggests:

ℓ2B

∮
εn − µ0

v⊥(k⃗)
dk∥ = 2π(n+ γ) (10)

where µ0 is a constant offset and γ is a Berry phase contribution.
In particular, the two conditions in Eq. 8 and 10 match when

εn − µ0

v⊥
=
k⊥
2

(11)

For a parabolic dispersion, e.g., a two-dimensional electron gas εk⃗ = k2/2m, this is consistent with µ0 = 0. Namely,
the zero of energy is at the bottom of the band.
For a more generic dispersion, we assume the Fermi velocity v⊥ is independent of εn in a small range around the

chemical potential εF , then it is straightforward to take a derivative with respect to n and get:

µ0
d

dn

∮
dk∥

v⊥(k⃗)
=

d

2dn

∮
dk∥

v⊥(k⃗)
=

dSk

dn

µ0 = Sk/

∮
dk∥

v⊥(k⃗)
= Sk · dµ

dSk
(12)

Physically, given the Fermi surface area Sk and its derivative dSk

dµ with respect to the chemical potential µ near the

Fermi level, the linear extrapolation to lower energies gives the zero of energy as where the cross-section area of the

constant energy contour vanishes. For a linear dispersion ε = ±v
∣∣∣⃗k∣∣∣ at chemical potential εF = vkF , for example,

the zero of energy is not at the Dirac node. It is straightforward to show that the consistent quantum oscillations are
derived from energy-time quantization with µ0 = εF /2 = vkF /2.
Therefore, it is vital to understand where is the zero of energy that the chemical potential µ is measured from. As

an example of the importance and ambiguity in correctly defining the zero of energy, the quantum oscillations of a
two-dimensional electron gas εk⃗ = k2/2m is:

1

Bn
=

2πe

Sk

(
n+

1

2

)
=

2e

k2F

(
n+

1

2

)
(13)

where Sk = πk2F and kF is the Fermi wave vector.
The energy-time quantization leads to the Landau levels:

εn = ωc (n+ γ)− µ0 (14)

where ωc = eB
m is the cyclotron frequency, and µ0 and γ are unknown constants since ∆ε × t = 2π only gives the

quantized level spacings ∆ε = εn − εn−1 and contains no information on the exact zero of energy. For the quantum
oscillations at a fixed chemical potential µ = k2F /2m, set εn = µ:

k2F
2m

=
eBn

m
(n+ γ)− µ0

1

Bn
=

2e

k2F + 2mµ0
(n+ γ) (15)

identical to Eq. 13 if we set γ = 1/2 and µ0 = 0 as we have derived above. Importantly, the fundamental behaviors of
the quantum oscillations including its characteristic frequency are not consistently recovered by this formula if µ0 ̸= 0.



3

III. THICKNESS DEPENDENCE IN A TILTED MAGNETIC FIELD

We can linearize the dispersion near the Weyl nodes for the lattice model we consider in the main text:

ε±
k⃗
=

[
(2t0kz)

2
+ ((λ− 1) tky)

2
+
(
±2 sin k0xkx

)2]1/2
(16)

where k0x = cos−1 (ε0/2− 1) and the ± signs are for the two Weyl nodes with opposite chirality.

For a magnetic field tilted in the ŷ direction B⃗ = Bz (ẑ + ŷ tan θy), the Fermi wave vector of the chiral modes are

k⃗∥,1(2) = ± µ

2 (λ− 1) tt0

4t20 tan θy ŷ + (λ− 1)
2
t2ẑ[

4t20 tan
2 θy + (λ− 1)

2
t2
]1/2 (17)

The shift of the peak positions is

δ

(
Φ0

Φz

)
= − µ · δLz

2π (λ− 1) tt0

[
4t20 tan

2 θy + (λ− 1)
2
t2
]1/2

∆

(
Φ0

Φz

)
(18)

Similarly, for a magnetic field tilted in the x̂ direction B⃗ = Bz (ẑ + x̂ tan θx), the Fermi wave vector of the chiral
modes are

k⃗∥,1(2) = ± µ

2t0 sin k0x

t20 tan θxx̂+ sin2 k0xẑ[
t20 tan

2 θx + sin2 k0xt
2
]1/2 (19)

together with the location of the Weyl nodes at
(
±k0x, 0, 0

)
therefore k⃗W = 2k0xx̂, the shift of the peak positions is

δ

(
Φ0

Φz

)
= −

[
µ

2t0 sin k0x

(
t20 tan

2 θx + sin2 k0x
)1/2

+ k0x tan θx

]
2δLz

2π
·∆

(
Φ0

Φz

)
There exists a residual Lz dependence δ

(
Φ0

Φz

)
= −δLz · k0x tan θx ·∆

(
Φ0

Φz

)
/π at µ = 0. In addition, at tilting angle

θ
(0)
x satisfying

tan θ(0)x = − µ

t0

[
4
(
k0x

)2 − µ2/ sin2
(
k0x

)]−1/2

(20)

the coefficient in the square bracket vanishes, and the quantum oscillations have no manifest Lz dependence.

IV. DISORDER EFFECTS

A. Disorder Model

As a model for the bulk effects of disorder, consider Weyl nodes with linear dispersion, and a random potential V (r)

with Gaussian distribution characterized by correlations V (r)V (r′) = V 2
0 f

(3)(r−r′), where f (d)(r) is a smooth function
that decays with characteristic length scale ξ, which, for concreteness, we will take as a normalized d-dimensional
Gaussian with variance ξ2, and (· · ·) indicates an average over disorder configurations.
In the Born approximation, the quantum lifetime, τQ, characterizing the timescale between elastic scattering events

in the bulk in the absence of a field is:

τ−1
Q =

2πν(0)V 2
0

(kF ξ)2
(21)

which is related to the quantum mean-free path by ℓQ =
τQ
v , where vF is the geometric average of the different spatial

components of the bulk velocity. Here ν(0) =
k2
F

2π2vF
is the density of states for the Fermi-surface of a single Weyl

node, and kF = µ
vF

is the Fermi wave vector for the Weyl pocket.
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In contrast, the transport lifetime obtained by weighting scattering events between states with momenta k⃗ and k⃗′

by a factor of
(
1− cos θk⃗,⃗k′

)
≈

(
1

kF ξ

)2

, where θk⃗,⃗k′ is the angle between k⃗, k⃗′, is given by:

τ−1
tr =

1

(kF ξ)2
τ−1
Q (22)

We can determine the parameter V 2
0 in terms of the measurable quantities τ−1

Q :

V 2
0 =

πvF ξ
2

τQ
(23)

B. Different Scattering Processes

For the bulk portion of the Weyl orbit, there are three potentially detrimental sources of disorder induced dephasing:
1) intervalley scattering between opposite chirality Weyl nodes, 2) scattering between different Landau levels (LLs)
within a single Weyl node, and 3) random phase accumulated along the chiral LLs in the absence of inter-LL scattering.
We will consider each of these channels in turn. The rates for these dephasing channels add, indicating that their

inverse length scales add: ℓtot =
(∑

i
1
ℓi

)−1

, indicating that the sample thickness limitation on observing quantum

oscillations will be set by the shortest scattering length scale.

C. Intervalley Scattering

As intervalley scattering requires momentum transfer ≈ kW , for long-wavelength disorder, intervalley scattering
will be suppressed by 1

(kW ξ)2
compared to total quantum scattering, indicating:

ℓinter-valley ≈ (kW ξ)
2
ℓQ (24)

In particular, since kW > kF , this length scale is even longer than the transport mean free path, ℓtr ≈ (kF ξ)
2ℓQ, for

all field strengths.

D. Inter Landau level Scattering

For µ larger than the LL spacing, multiple non-chiral bulk LLs will coexist at the same energy as the chiral modes,
and scattering between chiral and non-chiral modes within the same Weyl node is possible. However, since the
wavefunctions of different LL modes differ on lengthscales of order ℓB , for ξ ≫ ℓB , the matrix element for inter-LL

scattering between levels with indices m and n is suppressed by approximately a factor of
(

ℓB
ξ

)|m−n|
:

Vn,m = ⟨un|V |um⟩

≈
∫
dx
e−x2/2ℓ2B

2πℓ2B

∑
r

Hn(x)Hm(x)
xrV (r)(0)

r!

≈
(
ℓB
ξ

)|m−n|

V0 (25)

where Hn(x) is the nth Hermite polynomial. The dominant mixing will hence come from minimal difference in LL

indices, and hence, for ℓB ≪ ξ, the inter-LL scattering rate is suppressed by a factor of
|V0,1|2
|V0|2 ≈

(
ℓB
ξ

)2

, i.e. we

expect:

ℓinter-LL ≈
(
ξ

ℓB

)2

ℓQ (26)

We will see below that this length scale is longer than that set by dephasing while propagating along the chiral bulk
modes, which is expected to be the dominant limiting factor in observing quantum oscillations.



5

E. Dephasing within the bulk chiral modes

In the previous section, we have seen that inter-LL scattering may be neglected for ℓB ≪ ξ, and Lz ≪ ℓinter-LL. In
this regime, the bulk portion of the orbit occurs purely within the chiral modes of the lowest Landau level. In the
presence of an impurity potential V (r⃗) that varies smoothly on the length scale of k−1

F , we can model the ± chiral
mode localized within ℓB of the guiding center position r⃗⊥ in the xy plane, by the continuum Hamiltonian:

H
(±)
ch (r⃗⊥) = ψ† (∓ivF∂z − U(r⃗⊥, z))ψ (27)

where U(r⃗⊥, z) =
∫
d2δr⊥V (r0+δr⊥, z)|u0(r⊥)|2 is the matrix element of V within the lowest LL orbital with guiding

center coordinate r⃗⊥ which has wave function u0(r0 + δr⊥) ∼ 1
4πℓ2B

e−δr2⊥/(4ℓ2B).

For moderate fields, ℓB ≪ ξ, the mean-square of these matrix elements is then given by:

U(r, z)U(r, z′) ≈ V 2
0

2πξ2
f (1)(z − z′) (28)

The random phase factor accumulated through the bulk portion of the orbit (ignoring mixing between chiral and
non-chiral levels) is:

eiδϕ = exp

[
i

∫ L

0

Ur⊥(z)− Ur⊥+d(z)

vF

]
(29)

where the first term comes from propagating from bottom to top surface along the + chiral LL, and the second comes
from returning from top to bottom surface along the counter-propagating − chiral LL. In between the electron travels
spatial distance d = kT0 ℓ

2
B as it slides along the surface arc of the top surface.

Averaging the disorder phase over disorder gives:

eiδϕ = e
− 1

2v2
F

∫ Lz
0

dzdz′(U(r,z)−U(r+d,z))(U(r,z′)−U(r+k0ℓ2B ,z′))
(30)

The suppression factor depends strongly on the ratio of the orbit size, d = kT0 ℓ
2
B, to the disorder correlation length.

1. Low field regime (d ≫ ξ)

In the low field regime, d≫ ξ, U(r, z) is uncorrelated with U(r + k0ℓ
2
B , z), and:

eiδϕ ≈ e
− 2

v2
F

∫ L
0

dzdz′U(r,z)U(r,z′)
≈ e

− v2
F V 2

0
πξ2

Lz (31)

from which we identify the relevant bulk “mean-free path” length scale:

ℓch =
πv2F ξ

2

V 2
0

= vF τQ = ℓQ (32)

which is just the quantum mean-free path.

2. High field regime (d ≪ ξ)

On the other hand, for strong fields, d≪ ξ, the phase accumulated in traversing from bottom to top surfaces samples
almost the same disorder configuration as the reverse trip, resulting in near cancellation of the total accumulated phase,
and leading to a longer effective dephasing length for the chiral channel ℓch ≫ ℓQ.
To estimate ℓch, in this regime we also need the expression for:

U(r, z)U(r + d, z′) ≈

[
1−

(
d

ξ

)2
]
U(r, z)U(r, z′) (33)
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with which we find:

eiδϕ ≈ e
− 1

v2
F

∫ Lz
0

dzdz′
(
U(r,z)U(r,z′)−U(r,z)U(r+k0ℓ2B ,z′)

)

≈ e
−( d

ξ )
2 Lz

ℓQ ≡ e−Lz/ℓch (34)

Hence, in the high-field regime, the chiral nature of the bulk LLs and long correlation length of disorder enables
quantum oscillations to be observed for sample thicknesses up to

ℓch ≈
(
ξ

d

)2

ℓQ (35)

which can substantially exceed the quantum mean-free path.
We can express the enhancement of the dephasing length for the bulk chiral modes, ℓch, compared to the quantum

mean-free path, ℓQ, in terms of measurable quantities including: 1) the ratio
(

τtr
τQ

)
of transport to quantum lifetimes

obtained respectively from transport and bulk quantum oscillation measurements, and 2) the frequency of the surface
oscillations f ≈ kF k0, as:

ℓch
ℓQ

=

(
ξ

d

)2

≈
√
τtr/τQ
f/B

(36)

We note that the “high-field” regime may be accessed for relatively modest field scales. For example, for Cd3As2,

kF ξ ≈
√

τtr
τQ

≈ 10 − 30, [1] and f ≈ 60T , [2] and we estimate that d ≫ ξ can be achieved for fields of order a few

Tesla, which is incidentally consistent with the lowest fields for which surface oscillations are seen in recent thin film
devices[2].
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