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1 Gibbs sampler for the Hierarchical Bayesian

model.

Likelihood funcion for the LTI system.
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Now by using the vectorization transformation for an arbitrary matrix M, such
that M̄ = vec (M) and properties
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then by using vectorization we write the prior in canonical form
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�nally multiplying by the gaussian with hypervariance given by the spike

and slab prior and completing the square we get
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Spike and slab prior over the coe�cients
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Conditional distribution of w

p (w|H) ∼ Beta (c1 + #{hij = 1}, c2 + #{hij = v0}) (6)
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Likelihood of the similarity scores
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having vectorS̄ = [sij ]i<j representing the o�-diagonal elements of the up-

per triangular matrix of S, vectorh̄i representing the i − th row vector of H
and ◦ representing the elementwise product (Hadamard product). Then the
distribution of the upper diagonal elements is:
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Sampling β
Instead of sampling from p (βl|�) we use the non-negative least square esti-

mate of β, by solving the quadratic form
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1.1 Algorithm

The Algorithm ?? presents the Gibbs sampler for parameter inference in the
Hierarchical model. A brief overview of the inputs and outputs is also presented.

1.1.1 Program Inputs

Due that the DFT computed by the FFT algorithm yields complex numbers, a
real representation of the coe�cients is needed. We work with the so-called Real
Discrete Fourier Transform. It consists of stacking the real over the imaginary
part of the �rst (M − 1)/2 FFT coe�cients. We denote this M × N matrix
X. Figures (??) and (??) show plots for the DFT real and imaginary parts of
the A. thaliana data-set, with a photoperiod of 12 hours. The magnitude and
phase spectra is also shown, �nally the RDFT is presented at the bottom of the
picture.

Hyperparameters a1 and a2 are set to 1 so w is uniformly distributed in
the interval [0, 1]. Parameters b1 and b2 are set so the hypervariance hijτ

2 has
a continuos bi-modal distribution, according to the recommendations of [?], in
which they set them to 5 and 50 respectively. Alternative parametrization of 50
and 500 was also tested yielding better results in some cases.

The hyperparameters c1 and c2forσ
−2
D are set to 0.001 and 0.001, this is

a weak prior re�ecting uncertainty about the linearity of the system. Hyper-
paramters d1 and d2 are set to 10 and 0.001, this parametrization required a
manual tunning, as the scale parameter σ−2

seq having a weak prior resulted in the
e�ects of the sequence similarity model to banish. By modifying this prior we
can give more �weight� to the sequence similarity clustering thus, the �exibility
of the Hierarchical model.
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Figure 1: Spectra for the A. thaliana circadian clock simulation with a 12 hour
photo-period

Figure 2: Derivative Spectra for the A. thaliana circadian clock simulation with
a 12 hour photo-period
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1.1.2 A. thaliana light inputs U

Figure 3: Three examples of light input for the A. thaliana circadian clock
simulation.

1.1.3 Output

The Gibbs sampler presented in the previous section allows us to draw samples
from the joint conditional distribution p (H,A,C, β, w, τ, σD, σs| {Xk}). The
marginal distribution for each of the models parameters can be drawn from
this joint distribution, and the expected value for each parameter equals to the
average of the samples.

For example, �gure illustrates the expected value for matrix H obtained from
averaging over 1000 samples drawn from the marginal distribution p (H| {Xk}).
This �gure shows in dark red those elements with higher probability of a regu-
latory interaction under the model assumptions, except the diagonal elements,
which represent the decay rates of the equation model. The AUPR were com-
puted by thresholding the o�-diagonal elements of this matrix for each data-set.
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Algorithm 1 Algorithm for the DFT-based Spike and slab prior model with
sequence similarity.

Inputs: K time series ofM time-points for N gene expression levels, encoded in
matrices {xk}. Prior hyper-parameters a1, a2, b1, b2, c1, c2. Optional similarity
matrix S.
Outputs: Joint conditional posterior distribution
p (H,A,C, β, w, τ, σD, σs| {Xk})

1. Obtain the DFT of {xk} and the corresponding RDFT coe�cient matrices
{Xk}

2. Compute the derivatives
{

Ẋk

}
3. Sample from the conditional distribution over the LTI coe�cients, given

in eq. (??)

4. Sample from the conditional distribution overτ−2 given by eq. (??)

5. Sample H from eq. (??), to account for the decay rates we set diagonal
elements hii to 1, and set the diagonal elements of matrix A to negative.

6. Sample w from eq. (??)

7. Sample σD from eq. (??)

8. OPTIONAL sample σseq from eq. (??) and β from the nonnegative least
squares solution to equation (??).

9. Return to step 3

Note: A burn in period of 4000 samples is considered in the general purpose
implementation of the model.

Figure 4: Heat-map representing the expected value for p (H|�) obtained by
averaging the last 1000 samples. Rows represent targets and columns regulators.
The diagonal indicates the decay parameters λ.
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2 Heatmaps and PR curves for the experiments

Figure 5: Heatmaps representing the posterior probability for the A. thaliana
circadian clock network

Figure 6: PR curves for the A. thaliana circadian clock network
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Figure 7: Heatmaps representing the posterior probability for the Dream4 Chal-
lenge network

Figure 8: PR curves for the DREAM4 challenge network
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Figure 9: Heatmaps representing the posterior probability for the s. cerevisiae
network

Figure 10: PR curves for the s. cerevisiae network
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3 A. thaliana circadian clock

The arabidopsis thaliana circadian clock model as presented in, is shown in Fig.
??.

Figure 11: A. thaliana circadian clock model, transcriptional elements LHY,
PRR9, PRR7, NI, Y, and TOC1. Post-transcriptional elements ZTL, TOC1mod
and LHYmod. Light input is represented by a lighting symbol. Activating
interactions are represented by solid line with arrows, repression by solid line
with rectangles at the end, post transcriptional interactions are represented by
dashed lines. .

4 DREAM4 network

The 10-node oscillatory network that was part of the DREAM4 challenge sup-
plementary information data set is presented in Fig. ??.
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Figure 12: DREAM4 challenge network with 10 nodes, of those 3 are inputs,
node G9 was subjected to a perturbation for half the time points.

5 S. cerevisae cell cycle network

In Fig. ?? the inferred networks after thresholding the value of p (hij = 1) are
presented, the putative ground truth matrix is presented on Fig. ??
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Figure 13: Inferred yeast networks for di�erent data subsets with and without
sequence information, edges go from blue (regulators) to red (targets)..

Figure 14: Putative yeast regulatory network edges go from blue (regulators)
to red (targets)..

The putative regulatory network was built based on these references.

• Regulation of SIC1 by SWI5 as in [?].

• Regulation of SWI4 by YHP1 as in [?].

• Regulation of YHP1, SWI4, YOX1 and HCM1 by SWI4 as in [?].

• Regulation of SWI5 and ACE2 [?]; YHP1 [?]; SIC1, YOX1 and HCM1
[?]; NDD1 [?]; by FKH1.

• Regulation of SWI6 and MBP1 by NRM1 as in [?].
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• Regulation of SWI6, SWI4 and MBP1 by WHI5 as in [?].

• Regulation of SWI5, YHP1 and FKH1 [?]; ACE2 and NDD1 [?] by FKH2.

• Regulation of SWI4 and SWI5 by MCM1 as in [?].

• Regulation of SWI4, FKH1, YOX1, NRM1, HCM1 and NDD1 as in [?].

• Regulation of YHP1, FKH1, FKH2, WHI5 and NDD1 by HCM1 as in [?].

• Regulation of SWI5 and ACE2 [?]; YHP1 and HCM1 as in [?].

• Regulation of YHP1, FKH1, YOX1, NRM1 and HCM1 by MBP1 as in
[?].

• Regulation of NDD1 [?]; SWI6 and MBP1 by the interaction of transcrip-
tion factor MBF with STB1 [?].

• Regulation of SWI4 and SWI6 by its cobinding with MCM1p as in [?].
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