Supplementary materials information

Titile: An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design

Authors: Yongping Zhao^{1,#}, Congsheng Zhang^{1,2,#}, Wenwen Liu¹, Wei Gao¹, Changlin Liu¹, Gaoyuan Song¹, Wen-Xue Li¹, Long Mao¹, Beijiu Chen², Yunbi Xu^{1, 3}, Xinhai Li¹, Chuanxiao Xie^{1,*}

Author affiliations:

¹ Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for

Crop Gene Resources and Genetic Improvement, Beijing, China 100081

² Anhui Agricultural University, Hefei, Anhui Province, China 230036

³ International Maize and Wheat Improvement Center, El Batán, 56130, Mexico

I. The list of 5 supplementary figures.

Supplementary Figure 1. A scheme illustrating the designed targeted chromosome deletion region within the *AtTFL1* region within gene structure.

Empty rectangle, UTR region; black rectangle, exons; dash lines, introns; vertical arrows, the sgRNA CRISPR/Cas9 targeted sites.

Supplementary Figure 2. The design and sequence detail of dual-sgRNA CRISPR/Cas9 for deleting target region of *AtMIR169a* locus.

A. Expressed sgRNA1 targeting *AtMIR169a* at site 1. The PAM sequence AGG is underlined. PAM, protospacer-adjacent motif sequence (sequence NGG underlined in red.

B. Expressed sgRNA2 targeting *AtMIR169a* at site 2. The PAM sequence AGG is underlined. The sequences underlined in bold (A panel and B panel in this figure) are expected to be joined together after precision repair of both DSB lesions induced by the two sgRNAs.

Supplementary Figure 3. Screening of targeted deletion mutation lines of *mir169a* mutant in the T_1 generation.

M: DNA size marker (GeneRulerTM 100-bp DNA Ladder; Fermentas, Beijing); WT, Columbia

Col0 wild type; 8, 12, 31, 32, 33, 34, 35, 36, 39, 42: the 10 lines in which the heterozygous targeted mutation was identified.

Supplementary Figure 4. The observed left (sgRNA1) or right (sgRNA2) indel mutations induced by single or dual sgRNAs rather than deletion of the entire target region in effort of deleting *AtMIR827* target region.

PAM, proto-adjacent motif; LD6, 6-bp deletion at the left sgRNA1-mediated site; RD1, 1-bp deletion at the right sgRNA2-mediated site. The number plus multiplication symbol indicates the observed individuals. For instance, for "3×" in figure panel B, 3 individuals had a 6-bp deletion mutation at the left sgRNA1 site (LD6) with no change at the sgRNA2 site.

Supplementary Figure 5. The sequencing evidences of the full length of the amplicon of the targeted replacement events. The full sequence could be seen in Supplementary File 1. The combined 4 junctions in one amplicon could identify a replacement event. Only junction sites 1-4 were shown. B: The junction site 1 sequence was shown; C: The junction site 2 was shown; D: The reverse complementary sequence of the junction 3. E: The reverse complementary sequence of the junction 4.

Note: Four raw sequencing file harboring 4 Junction sites had been provided as Supplementary File 2, 3, 4, and 5.

II. The list of 12 supplementary files.

Supplementary File 1. The desired sequence detail of partial AtTFL1 was replaced with eGFP. **Supplementary File 2.** The raw sequencing peaks surrounding the junction 1 of the replacement event.

Supplementary File 3. The raw sequencing peaks surrounding the junction 2 of the replacement event.

Supplementary File 4. The raw sequencing peaks of the reverse complementary sequence surrounding the junction 3 of the replacement event.

Supplementary File 5. The raw sequencing peaks of the reverse complementary sequence surrounding the junction 4 of the replacement event.

Supplementary File 6. The raw sequencing peak of the reverse complementary sequence harboring re-joining junction site after DNA donor had been target deleted in plant.

Supplementary File 7, 8 and 9. Three more biological replicates of the sequencing evidence for harboring re-joining junction site after DNA donor had been target deleted in plants.

Supplementary File 10. The sequence of the mentioned key elements of CRISPR/Cas9 expression cassette in this study.

Supplementary File 11. The list of primers used in this study.

Supplementary File 12. The sequence detail of DNA donor template before and after deletion to supply for HDR repair.

Supplementary Figure 1

Supplementary Figure 1. A scheme illustrating the designed targeted chromosome deletion region within the *AtTFL1* region within gene structure. Empty rectangle, UTR region; black rectangle, exons; dash lines, introns; vertical arrows, the sgRNA CRISPR/Cas9 targeted sites.

Supplementary Figure 2

Supplementary Figure 2. The design and sequence detail of dual-sgRNA CRISPR/Cas9 for deleting target region of *AtMIR169a* locus.

A. Expressed sgRNA1 targeting *AtMIR169a* at site 1. The PAM sequence AGG is underlined. PAM, protospacer-adjacent motif sequence (sequence NGG underlined in red.

B. Expressed sgRNA2 targeting *AtMIR169a* at site 2. The PAM sequence AGG is underlined. The sequences underlined in bold (A panel and B panel in this figure) are expected to be joined together after precision repair of both DSB lesions induced by the two sgRNAs.

Supplementary Figure 3

Supplementary Figure 3. Screening of targeted deletion mutation lines of *mir169a* mutant in the T_1 generation.

M: DNA size marker (GeneRuler[™] 100-bp DNA Ladder; Fermentas, Beijing); WT, Columbia Col0 wild type; 8, 12, 31, 32, 33, 34, 35, 36, 39, 42: the 10 lines in which the heterozygous targeted mutation was identified.

Supplementary Figure 4

The observed mutations other than deletion induced by single and/or both sgRNAs

Supplementary Figure 4. The observed left (sgRNA1) or right (sgRNA2) indel mutations induced by single or dual sgRNAs rather than deletion of the entire target region in effort of deleting *AtMIR827* target region.

PAM, proto-adjacent motif; LD6, 6-bp deletion at the left sgRNA1-mediated site; RD1, 1-bp deletion at the right sgRNA2-mediated site. The number plus multiplication symbol indicates the observed individuals. For instance, for " $3 \times$ " in figure panel B, 3 individuals had a 6-bp deletion mutation at the left sgRNA1 site (LD6) with no change at the sgRNA2 site.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary Figure 5

Supplementary Figure 5. The sequencing evidences of the full length of the amplicon of the targeted replacement events. The full sequence could be seen in Supplementary File 1. The combined 4 junctions in one amplicon could identify a replacement event. Only junction sites 1-4 were shown. B: The junction site 1 sequence was shown; C: The junction site 2 was shown; D: The reverse complementary sequence of the junction 3. E: The reverse complementary sequence of the junction 4.

Note: Four raw sequencing file harboring 4 Junction sites had been provided as Supplementary File 2, 3, 4, and 5.

Supplementary file 1. The desired sequence detail of partial AtTFL1 was replaced with eGFP.

This sequence was confirmed with assembled sequencing from 1 amplicon using primer pair of F1 and R4.

	F	1 primer				
1	ctttggtttt catt	tggtta tcg <mark></mark> G	TTATTA ACCT	AACCGA AACCO	GAAACC GAAA	ГСТААG
61	ACATATAATA	TTCAACCGGT	TATTTTAAGC	TATCCAAACC	TGAACCGAAC	CATGTTTTTC
			Junc <mark>tion</mark> 1			
121	GGTTCGATTC	GGTTCGGTTA	ATCGG <mark>TTAGC</mark>	GGTTTTTTTG	CCCAGGCCTA	CTCTGAGCAA
181	TAATTGTATC	CGGAGTTGTA	ATAGAATCAA	AGTACGATGA	GAGTGTTTTT	ATGACAAATA
241	TCTTAATCTT	GGCCAATTAT	ATGTTCTACT	GAAATTCTTT	TTGAATTCAT	CGACCAGTGA
301	GACTTAAAAA	TAGCTTTTTA	TTCGCCGAGG	TATATATAGC	TAGGAATTTT	GTCGAAATTT
361	AGACGTTAGT	GGGTTTTGTT	CTTCGTGACA	CAAAAGATAT	TCTATATATT	AACGAAATCT
421	AGCGATCGAT	ATGGTATTTA	TATAAAGTCT	TGGTCATAGA	TAGGGGTTGA	AACTTGAAAC
481	CATGCATGAT	ATGCCAATGT	TGCTGAAGCA	GTCAATGTTG	CTGAAGAAGT	CAAACGTAAT
541	TATATAGTGA	ATACCAAAAA	AGTGATATTT	CTTAATTCAA	TTAAATATAA	TTATAGTTTT
601	AAATCACCTA	AAATAAGTTA	CTTATTAAAA	CCCCCCAAAT	TTACTTTAAT	ATAGTTGGTG
661	TACATGTTTG	AGAAAGCAAA	CAAAAAGAAA	AAGAAAAAGA	AAAAAAAAG	AGAAAGAGGT
721	TAGTACACAT	AATTGGGAAT	TAATGTCTAT	TGATTCTTTT	ATCTTTCTCT	CTCTCTCTAA
			F2 and	R1 primer sit	e	
781	GACGGAAAAC	CCCTATAAAT	AG <u>atgtctcg</u>	gtcgtctctt	tctctCCCAA	ATCACTACAA
0.4.1					start codon	of AtTFL1
841		ICCICIAAGI	TAACAAAAGA	AAATGGAGAA	IAIGGGAACI	AGAGIGAIAG
0.01	sgRNAI ta	rgeted resi	due and Jun	ction 2	1701010000	0000010110
901	AGCCATTGAT	AATGGGGGAAA	TICCCGATCT	AGTAACATAG	ATGACACCGC	GCGCGATAAT
961	TTATCCTAGT	TIGCGCGCTA	TATTTIGITT	TCTATCGCGT	ATTAAATGTA	TAATTGCGGG
1021	. ACTUTAATUA	TAAAAACCCA	TCTCATAAAT	AACGTCATGC	ATTACATGTT	AATTATTACA
1081	. TGCTTAACGT	AATTCAACAG	AAATTATATG	ATAATCATCG	CAAGACCGGC	AACAGGATTC
1141	. AATCTTAAGA	AACTITATIG	CCAAATGTTT	GAACGATCGG	GGAAATTCGA	GCTCGGTACC
1201	CGGGCGATCA	TACCTTTCTC	TTCTTCTTGG	GAGAACCCCC	TTTGTACAGC	TCGTCCATGC
1261	CGTGAGTGAT	CCCGGCGGCG	GTCACGAACT		CATGTGATCG	CGCTTCTCGT
1321	ТССССТСТТТ	GCTCAGGGCG	GACTGGGTGC	TCAGGTAGTG	GTTGTCGGGC	
1381	GGCCGTCGCC	GATGGGGGTG	TTCTGCTGGT	AGTGGTCGGC	GAGCTGCACG	CTGCCGTCCT
1441	ССАТСТСССС	GCGGATCTTG	AAGTTCACCT	TGATGCCGTT	CTTCTGCTTG	TCGGCCATGA
1501	ΤΔΤΔΩΔΟΩΤΤ	GTCCCTCTTC	TACTTCTACT	CCACCTTCTC	CCCCAGGATG	TTECCETCCT
1561	ссттеллетс	CATCCCCTTC		GCTTCACCAG	CCCCAGGAIG	
1621		CGTCTTGTAG	TTCCCCTCCT	CCTTGAAGAA	GATGGTGCGC	TCCTCCACCT
1681		CATCCCCCAC	TTCAACAACT	CCTCCTCCTT	CATCTCCTCC	CCCTACCCCC
17/1				TCACCACCCT	CCCCCACCCC	
1901		gaagatgaaa		CONCONSIGNA	CCTCCCAUUUU	CCCTCCCCCT
1001		CCTCAACTTC	TCCCCCTTTA		CACCTCCACC	ACCATCOCCA
1001	. UGUUGGAUAU	GUIGAAUIIG	R2 primer (i	n GFP)	CAGUIUGAUU	AUUAIUUUA
1921	CCACCCCGGT	GAACAGetee	tegecettge		GGGGATCCTC	TAGAGTCCCC
1981	CGTGTTCTCT	CCAAATGAAA	TGAACTTCCT	TATATAGAGG	AAGGGTCTTG	CGAAGGATAG

2041	TGGGATTGTG	CGTCATCCCT	TACGTCAGTG	GAGATATCAC	ATCAATCCAC	TTGCTTTGAA	
2101	GACGTGGTTG	GAACGTCTTC	TTTTTCCACG	ATGCTCCTCG	TGGGTGGGGG	TCCATCTTTG	
2161	GGACCACTGT	CG <u>gcagaggc</u>	atcttcaacg	<u>at</u> GGCCTTTC	CTTTATCGCA	ATGATGGCAT	
		F3	<u>primer region</u>				
2221	TTGTAGGAGC	CACCTTCCTT	TTCCACTATC	TTCACAATAA	AGTGACAGAT	AGCTGGGCAA	
2281	TGGAATCCGA	GGAGGTTTCC	GGATATTACC	CTTTGTTGAA	AAGTCTCAAT	TGCCCTTTGG	
2341	TCTTCTGAGA	CTGTATCTTT	GATATTTTTG	GAGTAGACAA	GTGTGTCGTG	CTCCACCATG	
2401	TTGACGAAGA	TTTTCTTCTT	GTCATTGAGT	CGTAAGAGAC	TCTGTATGAA	CTGTTCGCCA	
2461	GTCTTTACGG	CGAGTTCTGT	TAGGTCCTCT	ATTTGAATCT	TTGACTCCAT	GGCCTTTGAT	
2521	TCAGTGGGAA	CTACCTTTTT	AGAGACTCCA	АТСТСТАТТА	CTTGCCTTGG	TTTGTGAAGC	
2581	AAGCCTTGAA	TCGTCCATAC	TGGAATAGTA	CTTCTGATCT	TGAGAAATAT	ATCTTTCTCT	
2641	GTGTTCTTGA	TGCAGTTAGT	CCTGAATCTT	TTGACTGCAT	CTTTAACCTT	CTTGGGAAGG	
2701	TATTTGATTT	CCTGGAGATT	ATTGCTCGGG	TAGATCGTCT	TGATGAGACC	TGCTGCGTAA	
2761	GCCTCTCTAA	CCATCTGTGG	GTTAGCATTC	TTTCTGAAAT	TGAAAAGGCT	AATCTGGGGA	
		Jun <mark>ct</mark>	ion 3 and tl	he sgRNA2 t	argeted res	idue were bold	. 1e
2821	CCTGCAGGCA	TGCAAGCTCC	TCTTACAAGT	TTTCC ATTTC	ТААСТСААТА	ATCTTATAAA	
2881	TTGTAGCTTT	AGTTTTTATC	ATTCCTTTTT	CCAGTCTTTT	TTTTTTAATG	GTAAAACTCA	
00.11	R3 and F4	4 primers regi	on				
2941	AC <u>cgaaatgc</u>	aaaacaggtc	atgATAGACC	CAGATGTTCC	AGGTCCTAGT	GACCCCTTTC	
3001	TAAAAGAACA	CCTGCACTGG	TACGTTTAAT	TTATTTATTC	TTTCTTTTCA	TTTTGGGCCC	
3061	АТАТТССАТА	TACATIGCAT	TTAAATCATT	ТССТТАТААС	CCTAATAAAG	TTTTTTTGG	
3121	GTGTAAGTTA	TATACATTTG	AGTTGGTCAA	AGATCTCCAT	CGCCATGAGT	TCTCAGAACT	
3181	ТТТТСТСТАА	• • • • • • • • • • • • • • • • • • • •					
3241		AGIAAIAAIA	TTAGTATTGT	TGAATGTTTC	AATAGGATCG	TTACAAACAT	
	TCCCGGCACA	ACAGATGCTA	TTAGTATTGT CGTTTGGTAA	TGAATGTTTC GGCCTCTTCA	AATAGGATCG TGAATCTTGT	TTACAAACAT AATTTAAATA	
3301	TCCCGGCACA CTTATACATA	ACAGATGCTA TATCATGTTA	TTAGTATTGT CGTTTGGTAA TATAGAAATA	TGAATGTTTC GGCCTCTTCA AAAATATTTG	AATAGGATCG TGAATCTTGT CATTGTAATA	TTACAAACAT AATTTAAATA TAGGCAAAGA	
3301 3361	TCCCGGCACA CTTATACATA GGTGGTGAGC	AGTAATAATA ACAGATGCTA TATCATGTTA TATGAATTGC	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT	
3301 3361 3421	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG	ACAGATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA	
3301 3361 3421 3481	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA	ACAGAATAATA ACAGATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA	
3301 3361 3421 3481 3541	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA CGCACAAAGA	ACAGAATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG GAAACCGCTG	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT CACGCAAACG	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT CTAGTTTCAT	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG GATTGTCATA	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA AACTGCAAAA	
3301 3361 3421 3481 3541 3601	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA CGCACAAAGA ATGAAAGAAG	ACAGAATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG GAAACCGCTG AAAATTTGCA	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT CACGCAAACG TGTAATCTCA	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT CTAGTTTCAT TGTTTATTTG	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG GATTGTCATA TGTTCTGAAT	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA AACTGCAAAA TTCCGTACTC	
3301 3361 3421 3481 3541 3601 3661	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA CGCACAAAGA ATGAAAGAAG TGAATAAAAA	ACAGAATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG GAAACCGCTG AAAATTTGCA CTGCCAAAGA	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT CACGCAAACG TGTAATCTCA TGAGTTGAAT	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT CTAGTTTCAT TGTTTATTTG CCGAAATATC	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG GATTGTCATA TGTTCTGAAT AATTGAGTTT	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA AACTGCAAAA TTCCGTACTC ACAGAAGTAT	
3301 3361 3421 3481 3541 3601 3661	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA CGCACAAAGA ATGAAAGAAG TGAATAAAAA Junction4	ACAGAATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG GAAACCGCTG AAAATTTGCA CTGCCAAAGA	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT CACGCAAACG TGTAATCTCA TGAGTTGAAT	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT CTAGTTTCAT TGTTTATTTG CCGAAATATC	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG GATTGTCATA TGTTCTGAAT AATTGAGTTT	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA AACTGCAAAA TTCCGTACTC ACAGAAGTAT	
3301 3361 3421 3481 3541 3601 3661 3721	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA CGCACAAAGAA ATGAAAGAAG TGAATAAAAA Junction4 TGATAACGAT	ACAGAATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG GAAACCGCTG AAAATTTGCA CTGCCAAAGA	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT CACGCAAACG TGTAATCTCA TGAGTTGAAT	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT CTAGTTTCAT TGTTTATTTG CCGAAATATC	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG GATTGTCATA TGTTCTGAAT AATTGAGTTT	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA AACTGCAAAA TTCCGTACTC ACAGAAGTAT	
3301 3361 3421 3481 3541 3601 3661 3721 3781	TCCCGGCACA CTTATACATA GGTGGTGAGC GTTCAGGCAG CACTCGTAAA CGCACAAAGA ATGAAAGAAG TGAATAAAAA Junction4 TGATAACGAT TTGTAATACT	ACAGAATAATA ACAGATGCTA TATCATGTTA TATGAATTGC AAGCAAAGAC TTTGCGGTCG GAAACCGCTG AAAATTTGCA CTGCCAAAGA ACAAAATAG	TTAGTATTGT CGTTTGGTAA TATAGAAATA CAAGGCCAAG GTGTTATCTT AGTATGATCT CACGCAAACG TGTAATCTCA TGAGTTGAAT TCAGAATAAA TAAACTCTTG	TGAATGTTTC GGCCTCTTCA AAAATATTTG CATAGGGATA TCCTAATATC TGGTCTCCCT CTAGTTTCAT TGTTTATTTG CCGAAATATC AACTAGATTA ATTAATTAAT	AATAGGATCG TGAATCTTGT CATTGTAATA CATAGGTTTG CCTTCGAGAG GTCGCGGCCG GATTGTCATA TGTTCTGAAT AATTGAGTTT ATTGCATATC AAAATCTAAG	TTACAAACAT AATTTAAATA TAGGCAAAGA TGTTTGTTCT ATCACTTCAA TCTTCTTTAA AACTGCAAAA TTCCGTACTC ACAGAAGTAT ATGTTTAGCA TTGCTGTAGT	

R4 primer region

Captions:

- Sequence in red letters is the replaced sequence harboring the expression cassette of eGFP.
- Sequence with light blue shadowed is the sequence of the homologs arms.
- All primer regions were underlined in lowercase letters.
- At the middle junction sites.
- The captions were inserted between the lines of the sequence.
- The junction sites 1-4 were indicated. The different color letters in word "junction" indicate the real junction site located in the sequence. For example, "Junction 1" indicates that the junction sites were located within "ATCGGTTAGC" showing different shadow colors. "GT" was the very junction site.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 2. The raw sequencing peaks surrounding the junction 1 of the replacement

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 3. The raw sequencing peaks surrounding the junction 2 of the replacement event.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 4. The raw sequencing peaks of the reverse complementary sequence surrounding the junction 3 of the replacement event.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 5. The raw sequencing peaks of the reverse complementary sequence surrounding the junction 4 of the replacement event.

Inst Model/Name:3730xI/ABI3730-0000	Pure Base QVs:
Sequence Scanner Software 2 v2.0	Mixed Base QVs:

Printed on: 十月 22,2015 14:43:10 CST Electropherogram Data Page 3 of 3

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 6. The raw sequencing peak of the reverse complementary sequence harboring

re-joining junction site after DNA donor had been target deleted in plant.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 7. One more biological replicates of the sequencing evidence for harboring re-joining junction site after DNA donor had been target deleted in plants.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 8. One more biological replicates of the sequencing evidence for harboring re-joining junction site after DNA donor had been target deleted in plants.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary File 9. One more biological replicates of the sequencing evidence for harboring re-joining junction site after DNA donor had been target deleted in plants.

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Supplementary file 10. The sequence of the mentioned key elements of CRISPR/Cas9 expression cassette in this study.

>hspCas9 sequence

ATGGACTATAAGGACCACGACGAGAGACTACAAGGATCATGATATTGATTACAAAGACGATGACGATAAGATGGCCCC AAAGAAGAAGCGGAAGGTCGGTATCCACGGAGTCCCAGCAGCCGACAAGAAGTACAGCATCGGCCTGGACATCGG CACCAACTCTGTGGGCCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAA CACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCAC CCGGCTGAAGAACCGCCAGAAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAG GCACGAGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCAC AGTTCCGGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCT GGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTC TGCCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTT CGGAAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAA CTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGAC CTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCA AGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCTGCTGAAAGCTCTCGT GCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTGAC GGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTG CTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATC CACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGA TCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCTGGAT GACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGA GCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTA CGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTG AGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAA AGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCC CTGGGCACATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTC CCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCT GATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGA AACTTCATGCAGCTGATCCACGACGACGACCAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGG GCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAA GGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAA CCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGC AGAATGGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTG CCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAACCGGGGCAAGAGC GACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATT ACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATC AAGAGACAGCTGGTGGAAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAG TACGACGAGAATGACAAGCTGATCCGGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTCCGGA AGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTCGT GGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGT GCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGCAACATCATG AACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAA ACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATA TCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGC TGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCT GGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCAT GGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCT TGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCAT CGAGCAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAAC AAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCC CTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCA ${\tt CCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAAAAGGC}$ CGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAGTAA

>AtU6-26 Sequence

CATTCGGAGTTTTTGTATCTTGTTTCATAGTTTGTCCCAGGATTAGAATGATTAGGCATCGAACCTTCAAGAATTTGAT TGAATAAAACATCTTCATTCTTAAGATATGAAGATAATCTTCAAAAGGCCCCTGGGAATCTGAAAGAAGAAGAAGAAGCAG GCCCATTTATATGGGAAAGAACAATAGTATTTCTTATATAGGCCCATTTAAGTTGAAAAACAATCTTCAAAAGTCCCAC ATCGCTTAGATAAGAAAACGAAGCTGAGTTTATATACAGCTAGAGTCGAAGTAGTGATT

> Enhanced CaMV35S promoter

> SV40 NLS sequence

ATGGCCCCAAAGAAGAAGCGGAAGGTCGGTATCCACGGAGTCCCAGCAGCC

> Nucleoplasmin NLS sequence

> Universal sgRNA sequence

GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCT TTTTTT

Authors: Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W-X, Mao L., Chen B., Xu Y., Li X., Xie C.

Gene or	Primer	Sequence (5'-3')	Application		
target	orientation	Sequence (5 -5)	Application		
AtMIR169a	Forward	AGGATGGAGAAGCATGGAGG	PCR screening of deletion mutation		
	Reverse	CTCATGGTTGGCAGCAGTTT			
AtMIR827a	Forward	CCTTTTTTTCTGTAATCACCAGT	PCR screening of		
	Reverse	AGCTTCAGAGGTTCCAAATACA	deletion mutation		
	AtU6-26-1F	GCAGGCATGCAAGCTCATTCGGAGTTTTTGTATCTTGTT	To get sequence for		
AtU6-26	AtU6-26-2F	GCTTTTTTTTAAGCTCATTCGGAGTTTTTGTATCTTGTT	vector construction		
	Reverse	AATCACTACTTCGACTCTAGCTGTATAT	vector construction		
Enhanced CaMV35S	Forward	GGCCAGTGCCAAGCTTGCATGCCTGCAGGTCAAC	To get sequence for		
promoter	Reverse	GATCGGGGAAATTCGAGCTCTATCGTTCGTAAATGGTGAAAATT	vector construction		
	sσRNΔ1F	ATATACAGCTAGAGTCGAAGTAGTGATTGAGATTTTATGCCCCCAAGA			
AtMIR169a	SgRNAIF	GTTTTAGAGCTAGAAATAGCAAGTT	In fusion DCD for		
sgRNA1 and	sgRNA2F	ATATACAGCTAGAGTCGAAGTAGTGATTGAAATAGTTTCTAATTCTGG	Voctor construction		
sgRNA2	38111121	GTTTTAGAGCTAGAAATAGCAAGTT			
	UsgRNA-R	GGCCAGTGCCAAGCTTAAAAAAAAGCACCGACTCG			
	søRNA1F	ATATACAGCTAGAGTCGAAGTAGTGATTGGATCATCTATTGAAGGAAC			
AtMIR827a	SBUIAT	GTTTTAGAGCTAGAAATAGCAAGTT	In fusion PCR for		
sgRNA1 and	sgRNA2F	ATATACAGCTAGAGTCGAAGTAGTGATTGCAAATCGAAAAGCTTCTTA	vector construction		
sgRNA2	3g111721	GTTTTAGAGCTAGAAATAGCAAGTT	vector construction		
	UsgRNA-R	GGCCAGTGCCAAGCTTAAAAAAAAGCACCGACTCG			
U6: gRNA1:	UgRNA1F	GCAGGCATGCAAGCTCATTCGGAGTTTTTGTATCTTGTT	Splicing overlap		
sgRNA	UsgRNA-R	GGCCAGTGCCAAGCTTAAAAAAAGCACCGACTCG	extention PCR for vector construction		
U6: gRNA2:	UgRNA2F	GCTTTTTTTAAGCTCATTCGGAGTTTTTGTATCTTGTT	Splicing overlap		
sgRNA	UsgRNA-R	RNA-R GGCCAGTGCCAAGCTTAAAAAAAGCACCGACTCG			
	TFL1-F1	CTTTGGTTTTCATTTGGTTATCG	PCR screening of		
AtTFL1	TFL1-R1	AGAGAAAGAGACGACCGAGACAT	gene replacement and for TA clone of amplicons for		
	TFL1-F2	ATGTCTCGGTCGTCTCTTTCTCT	sequencing.		

Supplementary File 11. The list of primers used in this study.

	TFL1-R2	ATGGTGAGCAAGGGCGAGGAG		
	TFL1-F3	GCAGAGGCATCTTCAACGAT		
	TFL1-R3	CATGACCTGTTTTGCATTTCG		
TFL1-F4 TFL1-R4		CGAAATGCAAAACAGGTCATG		
		GTGACCTATCAAGCCATGTATGAG		
	F5 (BEcoRI-F)	TTGTGTGGAATTGTGAGCGG	PCR identification of DNA donor had been	
	R5 (AHindIII-R)	AAACTGAAGGCGGGAAACG	deleted and TA clone for sequencing validation.	
M13 R		CAGGAAACAGCTATGAC	Sequencing mutations in TA clone	

Supplementary File 12. The sequence detail of DNA donor template before and after deletion to supply for HDR repair.

Note:

- The DNA repair donor sequence should be the sequence between 1st and 2nd sgRNA target sites. This sequence would be deleted to supply as DNA repair donor
- The two vindicating the expected cut sites induced by Cas9 nuclease.
- PAM (protospacer-adjacent motif) sequences had been underlined and indicated as "PAM".
- This sequence harboring left region and right border (RB) sequence, eGFP expression cassette and both flanking homolog arms of TFL1.
- The text between the lines of the sequence were the captions.
- Detection primer pair (F5 and R5 pair were designed on the RE site of the *EcoR*I and *Hind*III, respectively.)
 F5 (BEcoRI-F): 5' TTGTGTGGAATTGTGAGCGG 3'
 R5 (AHindIII-R): 5' AAACTGAAGGCGGGAAACG 3'
 the blue shadow indicating the sequence regions.

I. Before deletion happened (total length 3902 bp)

> left region outside repair donor (1-96 bp region)

Primer F5 (BEcoRI-F) AGGCTTTACA CTTTATGCTT CCGGCTCGTA TG<mark>TTGTGTGGG AATTGTGAGC GG</mark>ATAACAATTTCACACAGG AAACAGCTAT GACATGATTA CGAATT >TFL1 left homologous arm (97-897 bp region)

I*sgRNA target regionPAMGCCA FIGATA ATGGGGGAGAGIGGTTAGCGG TTTTTTTGCC CAGGCCTACT CTGAGCAATAATTGTATCCG GAGTTGTAAT AGAATCAAAG TACGATGAGA GTGTTTTTAT GACAAATATCTTAATCTTGG CCAATTATAT GTTCTACTGA AATTCTTTT GAATTCATCG ACCAGTGAGACTTAAAAATA GCTTTTTATT CGCCGAGGTA TATATAGCTA GGAATTTGT CGAAAATTAGACGTTAGTGG GTTTTGTTCT TCGTGACACA AAAGATATTC TATATATAA CGAAATCTAGCGATCGATAT GGTATTTATA TAAAGTCTTG GTCATAGATA GGGGTTGAAA CTTGAAACCATGCATGATAT GCCAATGTTG CTGAAGCAGT CAATGTTGCT GAAGAAGTCA AACGTAATTATATAGTGAAT ACCAAAAAAG TGATATTTCT TAATTCAATT AAATATAATT ATAGTTTTAAATCACCTAAA ATAAGTTACT TATTAAAACC CCCCAAATTT ACTTTAATAT AGTGGGGTACATGTTTGAG AAAGCAAACA AAAAGAAAAA GAAAAAGAAA AAAAAAAGAG AAAGAGGTAGGAAAACCC CTATAAATAG ATGTCTCTGGT CGTCTCTTG TCTCCCAAAT CACTACAAATCTCTCTTTTC CTCTAAGTTA ACAAAAGAAAA ATGGAGAATA TGGGAACTAG AGTGATAGAGCATGTTAGATAA TGGGGAAATT ACTAAAAGAAAA ATGGAAGAATA TGGGAACTAG AGTGATAGAGCGGAAAACCC CTATAAATAG ATGTCTCGGT CGTCTCTTG TCTCCCAAAT CACTACAAATCTCTCTTTTC CTCTAAGTTA ACAAAAGAAAA ATGGAGAATA TGGGAACTAG AGTGATAGAGCCATTGATAA TGGGGAAATT C

> Tnos-eGFP-E35Spromoter (898-2812 bp region, the expression cassettee was placed on the minus strand) CCGATCTAGT AACATAGATG ACACCGCGCG CGATAATTTA TCCTAGTTTG CGCGCTATAT TTTGTTTTCT ATCGCGTATT AAATGTATAA TTGCGGGACT CTAATCATAA AAACCCATCT CATAAATAAC GTCATGCATT ACATGTTAAT TATTACATGC TTAACGTAAT TCAACAGAAA TTATATGATA ATCATCGCAA GACCGGCAAC AGGATTCAAT CTTAAGAAAC TTTATTGCCA AATGTTTGAA CGATCGGGGA AATTCGAGCT CGGTACCCGG GCGATCATAC CTTTCTCTTC TTCTTGGGAG AACCCCCTTT GTACAGCTCG TCCATGCCGT GAGTGATCCC GGCGGCGGTC ACGAACTCCA GCAGGACCAT GTGATCGCGC TTCTCGTTGG GGTCTTTGCT CAGGGCGGAC TGGGTGCTCA GGTAGTGGTT GTCGGGCAGC AGCACGGGGC CGTCGCCGAT GGGGGTGTTC TGCTGGTAGT GGTCGGCGAG CTGCACGCTG CCGTCCTCGA TGTTGTGGCG GATCTTGAAG TTCACCTTGA TGCCGTTCTT CTGCTTGTCG GCCATGATAT AGACGTTGTG GCTGTTGTAG TTGTACTCCA GCTTGTGCCC CAGGATGTTG CCGTCCTCCT TGAAGTCGAT GCCCTTCAGC TCGATGCGGT TCACCAGGGT GTCGCCCTCG AACTTCACCT CGGCGCGGGT CTTGTAGTTG CCGTCGTCCT TGAAGAAGAT GGTGCGCTCC TGGACGTAGC CTTCGGGCAT GGCGGACTTG AAGAAGTCGT GCTGCTTCAT GTGGTCGGGG TAGCGGCTGA AGCACTGCAC GCCGTAGGTG AAGGTGGTCA CGAGGGTGGG CCAGGGCACG GGCAGCTTGC CGGTGGTGCA GATGAACTTC AGGGTCAGCT TGCCGTAGGT GGCATCGCCC TCGCCCTCGC CGGACACGCT GAACTTGTGG CCGTTTACGT CGCCGTCCAG CTCGACCAGG ATGGGCACCA CCCCGGTGAA CAGCTCCTCG CCCTTGCTCA CCATCCCGGG GATCCTCTAG AGTCCCCCGT GTTCTCTCCA AATGAAATGA ACTTCCTTAT ATAGAGGAAG GGTCTTGCGA AGGATAGTGG GATTGTGCGT CATCCCTTAC GTCAGTGGAG ATATCACATC AATCCACTTG CTTTGAAGAC GTGGTTGGAA CGTCTTCTTT TTCCACGATG CTCCTCGTGG GTGGGGGGTCC ATCTTTGGGA CCACTGTCGG

CAGAGGCATC TTCAACGATG GCCTTTCCTT TATCGCAATG ATGGCATTTG TAGGAGCCAC CTTCCTTTTC CACTATCTTC ACAATAAAGT GACAGATAGC TGGGCAATGG AATCCGAGGA GGTTTCCGGA TATTACCCTT TGTTGAAAAG TCTCAATTGC CCTTTGGTCT TCTGAGACTG TATCTTTGAT ATTTTTGGAG TAGACAAGTG TGTCGTGCTC CACCATGTTG ACGAAGATTT TCTTCTTGTC ATTGAGTCGT AAGAGACTCT GTATGAACTG TTCGCCAGTC TTTACGGCGA GTTCTGTTAG GTCCTCTATT TGAATCTTTG ACTCCCATGGC CTTTGACTCA GTGGGAACTA CCTTTTTAGA GACTCCAATC TCTATTACTT GCCTTGGTTT GTGAAGCAAG CCTTGAATCG TCCATACTGG AATAGTACTT CTGATCTGA GAAATATATC TTTCTCTGTG TTCTTGATGC AGTTAGTCCT GAATCTTTG ACTGCATCTT TAACCTTCTT GGGAAGGTAT TTGATTCCT GGAGATTATT GCTCGGGTAG ATCGTCTTGA TGAGACCTGC TGCGTAAGCC TCTCTAACCA TCTGTGGGTA ACGATCTTT CTGAAATTGA AAAGGCTAAT CTGGGGACCT GCAGGCATGC AAGCT

> TFL1 right homologous arm (2813-3665 bp region)

CCTCTTACAA GTTTTCCATT TCTAACTCAA TAATCTTATA AATTGTAGCT TTAGTTTTA TCATTCCTTT TTCCAGTCTT TTTTTTTAA TGGTAAAACT CAACCGAAAT GCAAAACAGG TGATGATAGA CCCAGATGTT CCAGGTCCTA GTGACCCCTT TCTAAAAGAA CACCTGCACT GGTACGTTTA ATTTATTTAT TCTTTCTTTT CATTTGGGC CCATATTCCA TATACATTGC ATTTAAATCA TTTCGTTATA ACCCTAATAA AGTTTTTTTGGGC CCATATTCCA TATACATTG TGAGTTGGTC AAAGATCTCC ATCGCCATGA GTTCTCAGAA CTTTTCTGT AAAGTAATAA TATTAGTATT GTTGAATGTT TCAATAGGAT CGTTACAAAC ATTCCCGGCA CAACAGATGC TACGTTTGGT AAGGCCTCTT CATGAATCTT GTAATTAACA TATCCCGGCA CAACAGATGC TACGTTTGGT AAGGCCTCTT CATGAATCTT GTAATTAAA TACTTATACA TATACATT GCCAAGGCCA AGCATAGGGA TACATAGGTT TGTGTTTGTT CTGTTCAGGC AGAAGCAAAG ACGTGTTATC TTTCCTAATA TCCCTTCGAG AGATCACTTC AACACTCGTA AATTTGCGGT CGAGTATGAT CTTGGTCTCC CTGTCGCGGC CGTCTTCTTT AACGCACAAA GAGAAACCGC TGCACGCAAA CGCTAGTTTC ATGATTGTCA TAAACTGCAA AAATGAAAGA AGAAAATTTG CATGTAATCT CATGTTTCTGA ATTTCCGTAC TCTGACCACAA GAGAAAATTTG CATGTAATCT CATGTTTCTGA ATTTCCGTAC TCTGACCACAA GAGAAAATTTG CATGTAATCT CATGTTTTATT TGTGTTCTGA ATTTCCGTAC TCTGACCACAAA GAAAAATTTG CATGTAATCT CATGTTTATT TGTGTTCTGA ATTTCCGTAC TCTGACCTTTTACC PAM 2nd suRNA Harget region

AGTTTTCCAG CTT

> right border (3667-3902 bp region)

GGCACTG GCCGTCGTTT TACAACGTCG TGACTGGGAA AACCCTGGCG TTACCCAACT TAATCGCCTT GCAGCACATC CCCCTTTCGC CAGCTGGCGT AATAGCGAAG AGGCCCGCAC CGATCGCCCT TCCCAACAGT TGCGCAGCCT GAATGGCGAA TGCTAGAGCA GCTTGAGCTT GGATCAGATT GTCGTTTCCC GCCTTCAGTT TAAACTATCA GTGTTGACAG TAATTGGGCG R5 (AHindIII-R)

II. After deletion happened to supply the DNA donor for HDR repair

1>	The jur	nction seque	ence after d	lonor templa	ite has been	cut to	supply	for	HDR	repair
TTG	TGTGGAA	TTGTGAGCGG	ATAACAATTT	CACACAGGAA	ACAGCTATGA	CATGATT	ACG			
AAT	TGCCATT	GATAATGGGG	ACCTCTTACA	AGTTTTCCAG	CTTGGCACTG	GCCGTCG	TTT			
		The ju	nc <mark>tion site</mark>							
TAC	AACGTCG	TGACTGGGAA	AACCCTGGCG	TTACCCAACT	TAATCGCCTT	GCAGCAC	ATC			
CCC	CTTTCGC	CAGCTGGCGT	AATAGCGAAG	AGGCCCGCAC	CGATCGCCCT	TCCCAAC	AGT			
TGC	GCAGCCT	GAATGGCGAA	TGCTAGAGCA	GCTTGAGCTT	GGATCAGATT	GTCGTTT	CCC			
GCC	TTCAGTT	Т								
		_								
2>	Reverse	e complement	ary of the	Junction se	equence					
AAA	CTGAAGG	CGGGAAACGA	CAATCTGATC	CAAGCTCAAG	CTGCTCTAGC					
ATT	CGCCATT	CAGGCTGCGC	AACTGTTGGG	AAGGGCGATC	GGTGCGGGCC					
TCT	TCGCTAT	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG	CAAGGCGATT					
AAG	TTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	AAAACGACGG					
CCA	GTGCCAA	GCTGGAAAAC	TTGTAAGAGG	TCCCCATTAT	CAATGGCAAT					
			The jun	ct ion site						
TCG	TAATCAT	GTCATAGCTG	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA					
AT	TCCACAC	A A								

Note: Our sequencing results confirmed by sequencing of reverse complementary sequence by using M13 R primer in TA clone of PCR amplicons.