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I: SUPPLEMENTAL METHODS: 40	
 41	
1) Analytical Pipeline.  42	
The R scripts to conduct this analysis were posted on github (https://github.com/jtlovell/cis-trans-43	
test). The steps that make up each analysis are described briefly below and annotated more 44	
completely in the scripts posted on github.  45	
 46	
 47	
2) Experimental design details.  48	
The parents and F1 hybrids were planted in the field on October 12, 2012 as part of a larger 49	
experiment. The field experimental site was located in a prairie field (30.182° N, 97.879° W) at 50	
the south end of the Ladybird Johnson Wildflower Center (Austin, TX). Prior to planting, the 51	
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field was covered with Sunbelt Weed Fabric (Peaceful Valley Farms, Grass Valley, CA). For 52	
planting, we cut holes in the cloth and used a mechanical auger to drill holes in the soil. Plants 53	
were transferred from 3.79L pots into the holes. Plants were arrayed into rows that were two 54	
plants wide, with 1.2m wide walking paths between rows to allow for easy access to plants for 55	
sampling. Plants were spaced 40 cm apart from each other along rows. The full design included 56	
1000 fully randomized plants, of which the parents (N = 100 FIL2, 100 HAL2) and F1s (N = 30) 57	
were a subset. Due to exceptionally low rainfall in the fall of 2012, we watered plants as needed 58	
through November and early December to ensure establishment. Irrigation was ceased once 59	
plants entered winter dormancy. The experimental plants emerged from dormancy in the spring of 60	
2013 and were grown without manipulation until early July. Plants grew vigorously through April 61	
and May, as rainfall was abundant in those months (LBJ Wildflower Center Weather Station 62	
Data: April = 80.0 mm; May = 93.5 mm; Fig. 1). However, this period was followed by a 63	
prolonged hot and dry period, where only 5.08 mm of rainfall fell between 26-May and 7-July. 64	
 65	
 66	
3) Assessment of experimental conditions: 67	
Daily maximum air temperature and total precipitation were requested and downloaded from the 68	
National Oceanic and Atmospheric Administration (NOAA) web portal 69	
(https://www.ncdc.noaa.gov/cdo-web/) the most proximate weather stations to the collections 70	
sites of HAL2 and FIL2. Data for each year over the span of the experiment were parsed from 71	
these data files. Kernel density distributions for each climate variable were calculated using the R 72	
base function density and the percentile distribution of the 2013 drought were compared for each 73	
dataset. Local weather station data was available for 2013 at the site of the experiment. These 74	
data augmented our broader scale climate data.  75	
 76	
 77	
4) Processing of counts data: 78	
Libraries were compared by the relative expression of HAL2- and FIL2- allele-specific-79	
expression (ASE). Lines with studentized residuals from the linear model (HAL2 ASE ~ FIL2 80	
ASE) within each genotype (HAL2, FIL2, and F1) that gave bonferoni-adjusted p-values (t test) < 81	
0.0001 were excluded from all further analyses. This was accomplished using the function 82	
outlierTest in the R package car (Fox and Weisberg 2010). Genes with mean counts across all 83	
samples < 5 were also excluded from all further analyses. We then assessed ASE of the genes 84	
with >5 total counts and culled by two criteria. For a gene to be incorporated into our modeling of 85	
cis- and trans- acting expression regulation, genes had to have >5 mean FIL2 ASE counts in the 86	
FIL2 genotype and >5 mean HAL2 ASE counts in the HAL2 genotype. Furthermore, the mean 87	
HAL2 ASE counts in FIL2 genotypes and the mean FIL2 ASE counts in HAL2 genotypes had to 88	
be >1% of the FIL2 ASE counts in the FIL2 genotype and the HAL2 ASE counts in the HAL2 89	
genotype respectively.  These criteria assured that all genes analyzed had sufficiently precise and 90	
quantifiable ASE. 91	
 92	
 93	
5) Estimation of mapping bias: Many analysis of ASE are sensitive to mapping bias. We 94	
corrected for these effects by treating ASE from each plant and allele as its own library in the 95	
DESeq2 pipeline. As such, the FIL2 and HAL2 ASE are each normalized with regards to the total 96	
number of counts assigned to each bin. Despite these efforts, extreme mapping bias may still 97	
introduce statistical artifacts into our analysis. To test mapping bias, we compared the mean 98	
number of mapped reads for each allele, for each gene. If the linear correlation falls near a slope 99	
of 1, this is an indication that mapping bias is not extreme. Indeed, this is the case (Fig. S6). We 100	
find very little evidence of mapping bias.  101	
 102	
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 103	
6) Model Specification: 104	
Our model fit treatment (drought, recovery), genotype (FIL2, HAL2) and their interaction while 105	
controlling for sampling scheme. Assessment of differential expression was conducted by fitting 106	
two distinct models in DESeq2, one with total counts as the response variable and another with 107	
allele-specific counts (ASE). In each model, we corrected for the time of sampling by 108	
categorizing tissue harvest as early (in the first 50% of sampling) or late (in the last 50% of 109	
sampling). This categorical time variable was retained as the first term in all DESeq2 models to 110	
account for circadian variation in the linear models.  111	
 112	
In the first model, we quantified differential expression in the context of genotype, environment 113	
and GxE between the parental genotypes, FIL2 and HAL2 (Fig. 2a). Genes were retained for the 114	
analysis if mean total counts were > 5, resulting in a total of 22,322 genes analyzed. For each 115	
gene we fit the standard negative binomial linear model DESeq2 pipeline (Love et al. 2013; 2014) 116	
with:   117	
 118	

MODEL 1:  119	
log2 qij = β0	+ βDDi	+	βTTi +	βAAi + βTATi*Ai 120	

 121	
where for individual i and gene j, Di = 1 if the sample was collected late in the day and 0 it was 122	
collected early in the day, Ti = 1 if the sample is a recovery treatment sample and 0 if it is a 123	
drought treatment sample, and Ai = 1 if the sample genotype allele is HAL2 and 0 if it is FIL2. 124	
 125	
This analysis permitted the estimation of conserved genes that have similar responses across all 126	
individuals and environments (conserved), genes with expression that differs between the 127	
environments and/or genotypes, or genes that are differentially affected by the environment, 128	
depending on the genotype (GxE).  129	
 130	
We quantified heterosis by including total counts of F1 genotypes in MODEL 1. As such this 131	
model is a simple expansion of Model 1, where A has three levels (HAL2, FIL2 and F1). From 132	
this model, we conducted specific contrasts between the three genotypes and binned each gene 133	
into one of the seven heterosis categories (Table 1) via a custom R script. 134	
 135	
To quantify the degree of cis- and trans-acting expression modifiers, we again fit the standard 136	
DESeq2 model to allele-specific expression of HAL2, FIL2 and the F1 hybrid, but with: 137	
 138	

MODEL 2:  139	
log2 qij = β0	+ βDDi	+	βTTi +	βAAi +	βGGi + βTATi*Ai	+ βTGTi*Gi + βAGAi*Gi + βTAGTi*Ai*Gi 140	

 141	
where for individual i and gene j,  Di = 1 if the sample was collected late in the day and 0 it was 142	
collected early in the day, Ti = 1 if the sample is from the recovery treatment and 0 if it is from 143	
the drought treatment, Ai = 1 if the count is for the HAL2 allele and 0 if the count is for the FIL2 144	
allele and Gi = 1 if the sample from the F0 generation and 0 if it is from the F1 generation. 145	
 146	
Under the MODEL 2 specification, βA	estimates the allele contrast within the F1 generation, which 147	
corresponds to the classic cis-test notion of allelic imbalance: A(F1)/B(F1). The interaction term 148	
βAG can be interpreted as a difference of differences -- the difference between allele contrasts 149	
between generations -- which corresponds to the classic trans-test notion: 150	
[A(F1)/B(F1)]/[A(F0)/B(F0)]. We also fit MODEL 2 within each environment, to present the 151	
similarity of our analysis to traditional cis-trans tests (Figs. S4-5). 152	
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 153	
It is important to note that the estimation of cis/trans expression regulation is not identical to 154	
measuring differential expression. The test of allelic imbalance (Fig. 2a) is a specific contrast:  155	
 156	
allele = FIL2 & generation = F0 (FIL2-F0) vs. HAL2-F0.   157	
 158	
However, the cis-test is coded so that we contrast: 159	
 160	
FIL2-F1-ASE vs. HAL2-F1-ASE , 161	
 162	
and the trans test assesses the allele*generation interaction by contrasting the dependency of 163	
allelic imbalance on generation so that: 164	
 165	
slope(FIL2-F1-ASE vs. HAL2-F1-ASE) vs. slope(FIL2-F0-ASE vs. HAL2-F0-ASE). 166	
 167	
Finally, it is important to define the cases where this approach lacks power to detect cis, or trans 168	
effects. The most common pattern occurs where significant differential expression exists between 169	
the parental genotypes and differential expression exists in the same direction, but is no longer 170	
significant in the F1 generation. In this case, the cis and trans effects are antagonistic, causing our 171	
model to detect differential expression between the parents. However, we would be unable to 172	
attribute this divergence to either cis, or trans effects. In fact, this pattern is quite common among 173	
genes, indicating that both cis and trans acting gene expression regulation exists, but neither has a 174	
strong enough effect to be detected via linear modeling (Fig. S4).  175	
 176	
7) Multiple testing correction methodology:  177	
Gene-by-gene statistical analysis such as the linear modeling presented here conducted many 178	
independent tests, and therefore required multiple testing corrections to maintain an acceptable 179	
experiment-wise false discovery rate. Here, we used the R package qvalue (Storey 2002) to 180	
transform p-values into q-values that account for the distribution of p-values and the number of 181	
tests.  182	
 183	
For each set of p-values, we removed any NA’s, then calculated the q-value distribution as well 184	
as the estimated proportion of true null hypotheses (π0), which was estimated with the “bootstrap” 185	
method (Storey et al. 2004).  186	
 187	
8) Promoter motif enrichment analytical pipeline: 188	
A set of 485 annotated and published plant promoter motifs were downloaded from the 189	
newPLACE (Higo et al. 1999) database (http://www.dna.affrc.go.jp/PLACE/) on 9-December 190	
2015. These motif sequences were converted into probability matrices via a custom algorithm and 191	
read into the R package PWMEnrich (Frith et al. 2004).  192	
 193	
Promoter sequences from all P. hallii gene models were downloaded from the Phytozome server 194	
(http://phytozome.jgi.doe.gov/pz/portal.html) on 10-December 2015. We developed the 195	
background distribution of motifs on a random subset of 2000 promoter sequences using the 196	
function makePWMLognBackground. This background distribution was used to generate p-197	
values for all motif analyses. We conduced promoter motif enrichment analyses on 7 subsets of 198	
genes. For each set of genes, we conducted motif enrichment analyses in the PWMEnrich 199	
package using the following parameters: scoring via the “affinity” method and background 200	
correction through the logn method. P-values were transformed to q-values using the R package 201	
qvalue (Storey 2002).  202	
 203	
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 204	
II: COMPARISON OF CIS-TRANS TEST METHODOLOGIES 205	

 206	
1) Comparison to traditional binomial tests: 207	
We implemented the methods of Wittkopp et al. (2004), who utilized a Mann-Whitney t-test to 208	
quantify the effects of cis and trans variation using the R base function wilcox.test. More recently, 209	
the cis-trans test has also been conducted using exact binomial tests, which we implemented 210	
using the R base function binom.test. P-value ranks for these two tests and our negative binomial 211	
linear model are presented in Figure S4. 212	
 213	
2) Comparison of modeling in DESeq2 and LIMMA: 214	
An important consideration is that the HAL2 and FIL2 alleles in the F1 plants are not 215	
independent. While normalization in DESeq2 accounts for differential library size, other factors, 216	
such as the specific attributes of the plant, soil characteristics, pests etc. may cause correlations 217	
between the alleles in the F1 plants. As such, it may be appropriate to account for such 218	
correlations using a mixed effects model where the ID of each plant (Plant ID) is a blocking 219	
factor. Of particular concern would be any case where the estimated effects of a gene are biased 220	
in the DESeq2 approach, but are not significant when plant ID is accounted for.  221	
 222	
LIMMA is a differential expression analysis package originally designed for microarray 223	
experiments. We originally opted for DESeq2 over LIMMA for several reasons: 1) DESeq2 is 224	
designed explicitly for RNA-seq datasets (Love et al. 2014), 2) it good FDR control when many 225	
biological replicates are present (Soneson and Delorenzi 2013), 3) there is precedent for the 226	
analysis of cis and trans factors in DESeq2 (Bader et al. 2015). However, DESeq2 does not offer 227	
mixed effects modeling, a drawback that makes it impossible to fit plant ID as a term in the 228	
model. LIMMA does permit fitting a model with a random a blocking factor. 229	
However, LIMMA has several drawbacks that make us hesitant to exploit this approach. First, 230	
LIMMA fits a common correlation among all levels of random effects. Since our blocking factors 231	
occur across diverse sampling times and experimental treatments, it is not clear if this approach is 232	
appropriate. Second, LIMMA only permits a single blocking factor, whereas here, we would 233	
prefer to fit both time of sampling and unique plant ID as random effects. Finally, the blocking 234	
effect in LIMMA was originally designed for technical replicates (e.g. multiple arrays). It is not 235	
clear how this approach may perform using a blocking factor, like plant ID with 88 levels.  236	
 237	
We first compared identical models in DESeq2 and LIMMA (Fig. S9). Clearly the results are 238	
similar, but DESeq2 offers significantly greater power for the estimation of all model contrasts.  239	
 240	
3) Comparison of modeling with and without Plant ID as a blocking factor: 241	
To test for the significance of the effect of blocking by plant ID, we implemented our model in 242	
LIMMA, accounting for the correlation due to the unique plant, and using plant ID as a blocking 243	
factor. We then merged these results with the DESeq2 results and plotted the resultant data. It is 244	
clear that the LIMMA approach dramatically improves power to detect both cis and trans effects 245	
(Fig S10); however, it is not clear if this more complex model accurately fits the data.  246	
 247	
To assess this, we looked at the residual variance of the two models in LIMMA. Combined, the 248	
residual variance was reduced by 1.6% (median) in the model with plantID as a blocking effect. 249	
We conclude that the difference between models is very modest difference. Due to its increased 250	
power and simplicity, we opted for the DESeq2 fixed model over either of the LIMMA models.  251	
 252	
 253	
 254	
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III: SUPPLEMENTARY FIGURES 255	

 256	
Figure S1. Climatic context of 2013 drought. The native habitats of HAL2 and FIL2 are 257	
separated by 280km, but exhibit markedly different historical climates during the study period, as 258	
indicated by the amount of precipitation in the warmest quarter. The density distributions of mean 259	
daily precipitation (a) and mean maximum temperature (b) for each year from 1946-2014 are 260	
plotted for each site. The point estimate of the 2013 drought intensity relative to each site is 261	
plotted as a vertical arrow 262	
 263	

 264	
Figure S2. Qualification of mapping bias. Mean number of mapped reads to FIL2 and HAL2 265	
alleles are plotted on log10 scales. The red line indicates a 1:1 mapping ratio (no mapping bias).  266	
 267	
 268	
 269	
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 270	
Figure S3: Distribution of heterosis effects across differential expression and GxE 271	
categories. Panel a presents heterosis categorization of conserved genes, while panels b-e depict 272	
the heterosis categorizations in the four color categories in Fig. 2b-c. The total number of genes in 273	
each category are presented and colored by the treatment: black bars indicate the number of genes 274	
in each heterosis bin from the drought treatment, while white filled bars represent the expression 275	
categorization from the recovery treatment.   276	
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 277	
Figure S4. Comparison between linear modeling and traditional cis-trans test analyses. 278	
Comparison of the inference of cis (a-c) and trans (d-f) between DESeq2 models (“des cis”, “des 279	
trans”), mann-whitney test (“Wilcox cis”, “Wilcox trans”) and exact binomial tests (“binomial 280	
cis”, “binomial trans”). R2 values from a linear model implemented in the R base function “lm” 281	
accompany the title of each comparison. All tests are completed using only the dry treatment 282	
data. 283	
 284	
 285	
 286	
 287	
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 288	
Figure S5. Comparison total and ASE transcript counts in the F0 and F1 generations. The 289	
log2 fold changes derived from total count comparisons between F0-FIL2 and F0-HAL2 are 290	
compared to LFC attributable F1-FIL2 vs. F1-HAL2 ASE (cis) (panel a) and F0-FIL2 vs. F0-HAL2 291	
ASE (panel b).  292	
 293	
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 294	
 295	
Figure S6. Counts and reaction norms of cis*treatment interactions. The values plotted are 296	
the quantile normalized least square means of the expression values for each combination of 297	
treatment and cis effect for all genes with significant cis*treatment interactions. Genes with 298	
significant treatment * cis interactions are broken out into the 14 possible expression patterns. 299	
The alleles are colored as FIL2 (green) and HAL2 (black). Accompanying the line plots are bar 300	
plots indicating membership in each expression pattern type. Bars from left to right represent 301	
membership of each pattern from top to bottom in each column. Column 1 (red barplot) shows all 302	
genes where the slopes of each allele are in the same direction, but the relative ranks of the alleles 303	
do not change. Column 2 (green barplot) is reserved for genes where the slopes are in the same 304	
direction, but the allelic LSmeans change ranks. Column 3 (blue barplot) genes have opposite 305	
slopes but retain the same ranks, while column 4 (cyan barplot) genes have both opposite slopes 306	
and different ranks.  307	
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 308	
Figure S7. Counts and reaction norms of trans effects. The values plotted are the quantile 309	
normalized least square means of the expression values for each combination of allele and 310	
generation (trans) effect for all genes with significant trans effects. Genes with significant trans 311	
effects are broken out into the 14 possible expression patterns. The alleles are colored as FIL2 312	
(green) and HAL2 (black). Accompanying the line plots are bar plots indicating membership in 313	
each expression pattern type. Bars from left to right represent membership of each pattern from 314	
top to bottom in each column. Column 1 (red barplot) shows all genes where the slopes of each 315	
allele are in the same direction, but the relative ranks of the alleles do not change. Column 2 316	
(green barplot) is reserved for genes where the slopes are in the same direction, but the allelic 317	
LSmeans change ranks. Column 3 (blue barplot) genes have opposite slopes but retain the same 318	
ranks, while column 4 (cyan barplot) genes have both opposite slopes and different ranks.  319	
 320	
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 321	
Figure S8. Reaction norms across the 9 genes significantly affected by trans*treatment 322	
interactions. Mean log2 transformed, variance stabilized and library size corrected counts are 323	
plotted for all genes with significant trans*trt effects. The Arabidopsis ortholog TAIR gene 324	
identifiers and pseudonyms for each gene can be found in Table 2. 325	
  326	
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 327	
 328	

 329	

 330	

 331	

 332	
 333	
Figure S9. Comparison between LIMMA and DESeq2 models for the estimation of cis, 334	
trans and their interactions with treatment. P-values from each model are plotted on linear 335	
scales. The 1:1 line is plotted as the dashed black line. A gam (formula: y ~ s(x, bs = "cs")) 336	
smoothing curve is overlaid to demonstrate where the density of points lies. Points are colored by 337	
the method that determined significance. If neither model found significance, the points are grey. 338	
The number of genes in each category are reported in the legend.  339	
 340	
 341	
 342	
 343	
 344	
 345	
 346	
 347	
 348	
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a) 349	

 350	
b) 351	

 352	
c) 353	

 354	
Figure S10: Comparisons of a fixed effects model in LIMMA to one with PlantID as a blocking 355	
factor. There is a general increase in the residual variance for the fixed effects model where the 356	
residual variance is very high, but the two models perform equally well with models with lower 357	
residual variance (a-b). Panel c displays a histogram of the y-axis in panel b, marking the mean 358	
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(red) and median (blue) change in the percent decrease in residual variance from the fixed effects 359	
model to that with plantID as a blocking factor.   360	
 361	
 362	
 363	
 364	

IV: SUPPLEMENTARY TABLE CAPTIONS 365	
 366	
Table S1. Significant GO terms for five categories of genes: 1) drought-responsive, 2) up-367	
regulated in drought, 3) down-regulated in drought, 4) cis-by-treatment interaction affects 368	
expression, 5) trans regulated. FDR-corrected P-values are included along with GO id numbers 369	
and descriptions of each GO term. Terms are ordered by significance. 370	
 371	
Table S2: Significantly enriched promoter motifs terms for 7 categories of genes. All motifs 372	
passing an α = 0.05 threshold are reported. The annotations and references, parsed from the 373	
newPLACE database, accompany the motifs. The column “TEST” corresponds to the subset of 374	
genes analyzed: GxE genes with crossing reaction norms (green points, fig 2a) that were either up 375	
regulated (“gxe.halup.fildown”) or down regulated in HAL2 in drought (“gxe.haldown.filup”), 3) 376	
Genes with very significant trans effects (“all.trans q<0.01”), 4) genes with significant signatures 377	
of compensatory evolution (“compensatory”), 5) genes with cis-by-treatment interactions 378	
(“cis.trt”).  379	
 380	
Column names: ID = motif ID (newPLACE), RANK = q value derived rank of each motif for 381	
each test, RAW SCORE = the affinity test statistic score, P VALUE = background corrected, p-382	
value for the affinity test, TEST = the group of genes used to make the test (described above), Q 383	
VALUE = q-value calculated from the complete p-value distribution, SEQUENCE = The motif 384	
sequence, ACCESSION# = the newPLACE accession numeric identifier, DESCRIPTION = the 385	
newPLACE description, ASSOCIATED = newPLACE associated characteristics, ORGANISM = 386	
newPLACE organism in which the motif was identified, REFERNCE = newPLACE databased 387	
references that documented said motif.  388	
 389	
	390	
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