
S1 Text. Further discussion of the interchromosomal effect and correlations between 

recombination rate and other available DGRP phenotypes. 

 

Interchromosomal Effect 

Chromosomal inversions were first discovered in Drosophila melanogaster [1]. Recombination is 

suppressed within the inverted region, yet recombination elsewhere in the genome increases 

through what is known as the interchromosomal effect [2,3]. The interchromosomal effect has 

been repeatedly documented in Drosophila [4–6], and has also been observed in other species 

such as grasshopper [7] and maize [8]. A large number of the DGRP lines are either 

homozygous or polymorphic for a chromosomal inversion, as expected for natural North 

American populations of Drosophila melanogaster [9]. Within the DGRP, there are a total of 

sixteen different segregating inversions, all on the autosomes [10]. Out of the 205 lines, 93 lines 

contain at least one inversion.  

 As described in the text, our recombination rate data from the DGRP are consistent with 

the interchromosomal effect. Lines with inversions have significantly increased rates of 

recombination in the y v interval relative to lines with standard karyotypes (35.1 cM vs. 31.0 cM, 

P < 0.0001; t-test). This trend is echoed in the e ro interval (20.9 cM vs. 20.7 cM) but the 

difference in recombination frequency between standard and inverted karyotypes is not 

statistically significant (P = 0.66, t-test). These data further confirm the interchromosomal effect 

in Drosophila. 

 

Correlation with other available DGRP Phenotypes 

As a widely-used community resource, the DGRP offers a unique opportunity to examine 

the relationship between recombination rate and other phenotypes because a variety of 

phenotypes have been surveyed in this panel. Although anecdotal evidence suggests a link 



between recombination rate and organismal fitness [21,22], the adaptive significance of 

population-level variation in recombination rate remains unknown. We find no direct evidence of 

a relationship between recombination frequency and fitness in the e ro interval but we do see a 

marginally significant negative correlation in the y v interval. The direction of this correlation is 

opposite of what has been previously reported in humans [22] but similar to what has been 

reported in Drosophila [21]. It is unclear why humans and Drosophila differ in this way, and 

whether this is biologically relevant or an artifact of our experimental design. Indeed, our 

measurement of fitness is coarse and is likely a poor indicator of organismal fitness. Previously 

reported estimates of longevity in the DGRP, another aspect of organismal fitness, show no 

significant correlation with our estimates of recombination rate in either interval (S23 Table; 

[16]). Thus, any connection between recombination and fitness based on these data should be 

interpreted as tenuous at best.  

 However, if population-level variation in recombination rate has biological significance, 

one might expect that recombination rate would correlate with other organismal phenotypes. We 

tested whether crossover rates in the e ro or y v interval (of lines with standard karyotypes) were 

correlated with various traits including aggression [11], behavioral response to odorants [12,13], 

chill coma recovery [14,15], longevity [16], nutritional and immune indices [17], oxidative stress 

[18], pigmentation [19], sleep phenotypes [20], startle response [14,15], and starvation stress 

[14,15] (S23 Table). The majority of correlations were weak and not statistically significant. 

However, for the e ro interval, crossover rates were significantly positively correlated with 

female response to citral (Spearman’s ρ = 0.20, P = 0.03). For the y v interval, crossover rates 

were negatively correlated with female and male response to ethyl butyrate (Spearman’s ρ = -

0.21, P = 0.03; Spearman’s ρ = -0.20, P = 0.04, respectively) as well as female response to 

eugenol (Spearman’s ρ = -0.22, P = 0.02). Also in the y v interval, similar to the e ro interval, 

crossover rates were positively correlated with female response to citral (Spearman’s ρ = 0.21, 

P = 0.03), male response to citral (Spearman’s ρ = 0.28, P = 0.004) and also to male response 



to hexanal (Spearman’s ρ = 0.20, P = 0.04). While these correlations between crossover rate 

and behavioral responses to different naturally occurring odorants are statistically significant, 

the biological link between these phenotypes remains unclear.  

 The most intriguing significant correlation we uncovered is the correlation of rates of 

crossing over in the e ro interval to female survival time on paraquat-laced food (ρ = -0.25, P = 

0.01). Paraquat can cause oxidative stress and single-base damage, often corrected through 

the base-excision repair pathway. Though paraquat exposure does not appear to plastically 

increase meiotic recombination [23], there is clearly a link between stress and recombination in 

Drosophila and other systems [24–29]. This correlation between recombination and resistance 

to the toxic effects of oxidative stress specifically in females revealed here may be reflective of 

the general connection between stress and recombination. Interestingly, of seven candidate 

genes associated with oxidative stress susceptibility/resistance in the DGRP, two overlap with 

candidate genes selected for this study, CG9650 and Eip75B [18]. This overlap could suggest 

conserved players in the DNA damage repair pathway in both meiotically and mitotically dividing 

cells. 
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