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S2 Text: General Recursions for a PPF

Here we provide the general recursions of the PPF [1] and show how the recursions for the kinematic
decoder in (14)–(17) in the main text, and the parameter decoder for each neuron in (9)–(12) in the main
text are found as special cases of these recursions. We denote a general state variable (to be decoded) by
ht. For example, the state could be the kinematics or the parameters. We assume that the prior model
for ht is given by

ht = Ght−1 + b + zt−1 (1)

where zt is white Gaussian noise with covariance Z and b is a constant. We take the observation model as
the point process model in (4) in the main text with state ht, i.e.,

p(Nt|ht) =
∏
c

(λc(t|ht)∆)
Nc

t e−λc(t|ht)∆ (2)

and with a general rate function (i.e., neural tuning) λc(t|ht). Then by making a Gaussian approximation
to the posterior distribution at each time [1, 2], the recursions of the PPF are given by:

ht|t−1 = Ght−1|t−1 + b (3)

Λht|t−1
= GΛht−1|t−1

GT + Z (4)

Λ−1
ht|t

= Λ−1
ht|t−1

+

C∑
c=1

[(
∂ log λc(t|ht)

∂ht

)T (
∂ log λc(t|ht)

∂ht

)
λc(t|ht)∆

−(Nc
t − λc(t|ht)∆)

∂2 log λc(t|ht)
∂ht∂hTt

]
ht|t−1

(5)

ht|t = ht|t−1 + Λht|t

C∑
c=1

[(
∂ log λc(t|ht)

∂ht

)T
(Nc

t − λc(t|ht)∆)

]
ht|t−1

(6)

where as in our convention before, ht|t−1 and Λht|t−1
are the prediction mean and covariance, respectively,

and ht|t and Λht|t are the posterior mean and covariance, respectively. These recursions are obtained
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using (1) for the prediction step and a Gaussian approximation for the update step. This is for a general
rate or neural tuning function. If the rate function is log-linear as in (5) in the main text, the second-order

derivative vanishes ∂2 log λc

∂ht∂hTt
= 0. Hence for the parameter decoder for each neuron c with states taken as

ht = φct ,
∂ log λc

∂ht
= sTt , G = I, b = 0, Z = Q, and we get the recursions for each neuron as in (9)–(12)

in the main text. For the kinematic decoder with the states taken as ht = xt,
∂ log λc

∂ht
= α̃c

T
t−1|t−1,

G = (A−BLa), b = BLax∗, Z = W, and we get the recursions in (14)–(17) in the main text. Note that
all neurons are encoding the kinematics and we have assumed that neurons are conditionally independent
hence we get the summation over all neurons for the kinematic decoder.
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