S1 Table Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

Maryam M. Shanechi^{1,2,3,*}, Amy L. Orsborn^{3,4,3}, Jose M. Carmena^{2-4,*}

- 1 Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- 2 Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- 3 Helen Willis Neuroscience Institute, University of California, Berkeley, CA, USA
- 4 University of California, Berkeley–University of California, San Francisco Graduate Group in Bioengineering
- These authors contributed equally to this work.
- * shanechi@usc.edu, carmena@eecs.berkeley.edu

S1 Table

Performance Improvement Using Instant-OFC Method of Intention Estimation. Note that a positive improvement in reach time and movement error means a shorter reach time and a smaller movement error.

	instant-OFC vs. N-OFC (%)	instant-OFC vs. CursorGoal (%)
Success Rate	21%	26%
Reach Time	15%	24%
Movement Error	6%	not significantly different