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Model building strategy 

The assessment of the impact on the outcome (survival) of several potentially influential variables requires 
their simultaneous evaluation in a single model in order to explain di effect of each factor independently of 
the others. This avoid the misleading conclusion that multiple single factor (univariate) models may cause, 
even if these are a good starting point. Thus, a multivariate analysis was planned and a multivariable model-
building strategy was carried out for the present study. 
Aware that there is no consensus among researcher on the ‘best’ strategy to find a ‘good’ model, we chose a 
pragmatic approach as proposed by Royston and Sauerbrei (1). In accord with these Authors, “by ‘good’ we 
mean a model that is satisfactory from the subject-matter point of view, robust with respect to minor 
variation of the current data, predictive in new data,  parsimonious and useful beyond the dataset on which it 
was created “(chap. 1.1.1 page 1 of ref 1).  
The strategy used can be summarized as follow. 
1. The initial step involves, first, the selection of the criteria employed to choose the pool of variables 
among which the subsequent analysis had to identify the factors relevant to the outcome and, second,  the 
selection of the model class to be used, i.e., the Cox model, being the outcome of interest the survival time.  
Having in mind the main aim of our model (assess the effect of a new factor of interest, adjusting for some 
established factors in a multivariable model) we selected a pool of variables representing known factors 
affecting the outcome (1). Parsimonious selection criteria were used to avoid overfitting bias. The rule of “at 
least 10 observed events for each tested variable” (chap. 2.9.1 page 47 of ref 1) adopted at an early stage of 
the analysis was relaxed to “at least 10 observed subjects for each tested variable”. This allows the 
assessment of a wider spectrum of candidate factors in a framework with an acceptable balance between the 
number of observations and the size of the model tested. 
2. The multivariable analysis follow.  The first aim of the analysis is the selection of the ‘important’ 
factors that independently affect the outcome picking them out as a subset of the initial pool by means of a 
stepwise selection algorithm. The second aim is the clarification of the functional form (linearity or non-
linearity) of the continuous predictors since the linearity assumption “may prevent one from recognize a 
strong effect or lead one to mismodel the effect” (chap 1.2.1 pag.8 of ref 1). The Multivariable Fractional 
Polynomial (MFP) modelling algorithm developed by Sauerbrei and Royston (2) addresses these two key 
tasks in multivariable model building: elimination of ‘unimportant’ variables and selection of a ‘reasonable’ 
dose-response function for continuous variables (chap. 1.7.3 page 19 of ref 1). The MFP algorithm combines 
a backward variables elimination with a search for the best functional form (linear or not linear) of 
continuous variables (ref. 1, 2). 
3. The weight of each significant factor in the model is evaluated by both the hazard ratio and by the 
contribution to the global explained variation (R2). The partition of the global R2 is accomplished by the 
Shapley-Owen decomposition algorithm (3). The hazard ratio of continuous variables is related to clinically 
meaningful variation (e.g. 10 years period for age, 5% units for left ventricular ejection fraction).  For 
variables without a range of definite clinical meaning the hazard ratio relative to the interquartile range  (75°-
25° percentile difference) is employed. This allows comparison of the relative weight between factors and 
give a measure of the factor relevance on the studied population (e.g. NT-proBNP, GRK2, and 
norepinephrine).  The interquartile range was preferred over the standard deviation given the non normal 
distribution of the variables. 
4. Since the Cox model was adopted, it was mandatory to verify the proportionality assumption 
inherent with the basic formulation. To this end we used a modified version of the MFP (the MFPT) devoted 



to comprehensively explore the time-variable(s) interaction in order to check the assumption (chap. 11.1.1 
page 242-243 of ref 1). 
5. The next step involve the computation of model performance measures, i.e., calibration, 
discrimination ability and internal validity.  
a) The first is a goodness of fit assessment that we accomplished with the Gronnesby and Borgan 
calibration test (4). This test verifies the concordance between the observed survival (Kaplan Meier) and the 
survival estimated with the Cox model in five risk groups of the studied population. Five contiguous strata of 
the prognostic index (the linear combination of the factors with their Cox coefficients) identify the risk 
groups. Non-significant test indicates good calibration (4).  
b) The discrimination ability refers to how well the model can distinguish between patient outcomes. 
We used two indices to quantify it, first the Harrel’s C as a natural extension of the binary logistic C statistic 
(the area under the ROC curve), specifically we used a Harrel’s C version corrected for the censoring bias as 
suggested by Gonen and Heller (5). Second, we used a measure of the explained variance in the natural scale 
of the Cox model (R2) as proposed by Royston and Sauerbrei (6). 
c) Adhering to the suggestion expressed by Royston and Sauerbrei (chap 2.2 page 24 of ref 1) we 
measured the internal validity of the model by assessing the stability of the model characteristics with 
nonparametric bootstrap sampling (chap 8 page 183-186 of ref 1). Briefly, given the parameters of a model 
obtained applying the described model-building procedure,  the stability of each factor tested in the model is 
measured by the frequency that this factor is selected as ‘significant’ in a series of bootstrap replications of 
the dataset by applying the same procedure. Each bootstrapped dataset may be considered as a random 
replicate of the original dataset. 
External validity cannot be evaluated since it requires an independent dataset (i.e. an independent HF 
population) on which verify the model obtained in the studied population. Splitting the available dataset in 
‘test’ and ‘training’ groups is also not feasible since it would require a greater dataset dimension. 
Therefore, as we pointed out in the limitations, the external validity had to be deferred to future studies.  
6. The assessment of the clinical utility of a new marker is a mandatory step before its employment in 
the clinical practice and requires an ‘ad hoc’ study design oriented to the specific characteristics of the 
marker and of the clinical pathology involved. However, great interest has been raised by the possibility of 
gather measures of clinical utility from the same dataset used to assess the impact of a new biomarker. 
Several measures of usefulness have been suggested and gained popularity.  These include the Net 
Reclassification Improvement (NRI) (7), weighted NRI (wNRI) (8), Net Benefit (NB) (9) and Relative 
Utility (RU) (10). A study comparing the performance of all these indices (11) concluded that the three 
utility measures that take into account misclassification cost (wNRI, NB and RU) are preferable over the 
NRI and, “being a mathematical transformations of each other, lead to equivalent information”.  Notably, the 
Authors that first introduced the named indices jointly conducted this study.  The Authors concluded 
recommending the use and report of these decision-analytic measures for a range of risk thresholds, thus 
grounding the deduction over a meaningful range of risk.  
We, therefore, adopted the NB plots of different models over a wide risk range to enlighten the utility of the 
new biomarker.  
As regards the way to illustrate graphically the effect of the factor of interest on the outcome (survival), since 
the stratified Kaplan Meir graphs cannot take into account the presence of confounding, survival curves 
adjusted by influential covariate have to be employed. 
We adopted the directly adjusted survival curve method (12), namely, for each subject in the data set a 
survival curve is computed using the estimated Cox model. Each curve is obtained using the covariate values 
specific of each subject except for the factor of interest that is set to a given value for all curves. An average 
curve is then computed.  This curve represent an estimate of the Kaplan Meier survival curve that would be 
observed if all subjects in the study population had had the factor of interest at the chosen value. Actually, if 
the process is carried out using the values observed for each subject for all covariates (including the one of 
interest) the curve obtained indeed ‘is’ the overall Kaplan Meier. 



Thus a plot of ‘directly adjusted curves’ at the appropriate factor of interest values along with the standard 
overall Kaplan Meier will give graphical view of the strength of the effect of the factor of interest 
independent from confounding. 
STATA (v.13.0) was used to perform all analyses. 

  



Supplemental Table I. Adjudicated causes of death and rates of death by cause  

        
  N % of pts % of deaths 

All Cause Deaths 131 51.0%   

Cardiovascular deaths 102 39.7% 77.9% 
  Sudden 42 16.3% 32.1% 
  Worsening HF 26 10.1% 19.8% 
  Fatal Stroke 5 1.9% 3.8% 
Other Cardiovascular 29 11.3% 22.1% 
        
Non Cardiovascular  27 10.5% 20.6% 
  Infection 14 5.4% 10.7% 
  Malignancy 11 4.3% 8.4% 
  Other 2 0.8% 1.5% 
        
Unknown 2 0.8% 1.5% 

HF= heart failure; MI= myocardial infarction ; pts=patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table II. Beta blocker dose distribution in patients with lymphocyte GRK2 below and above 
the median value.  

Beta Blockers therapy dose 

  Low Medium High 

Pts below lymphocyte GRK2 median value      (≤ 
1.31 D.U.), % (n) 44.8% (30) 43.3% (29) 11.9% (8) 

Pts above lymphocyte GRK2 median value      (> 
1.30 D.U.), % (n) 50.0% (33) 39.4% (26) 10.6% (7) 

  p=0.833 
 

GRK2= G protein-coupled receptor kinase 2.Pts= patients 
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Supplemental Figure I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lymphocyte GRK2 levels in patients not assuming beta-blocker therapy and in patients at low, medium and 
high doses of beta-blocker therapy. BBlocker= beta-blocker
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