Supplemental Methods

mRNA Hybridization and Gene-expression Profiling. OCI-AML3 and REH cells were exposed to 1% and 21% O₂ for 48 hours and total RNA was extracted. After confirmation of RNA quality using a Bioanalyzer 2100 instrument (Agilent Technologies, Inc.), 300 ng of total RNA was amplified and biotin-labeled through an Eberwine procedure using an Illumina TotalPrep RNA Amplification kit (Life Technologies) and hybridized to Illumina HT12 version 4 human whole-genome arrays. Each of these arrays has an average of 15 beads for each of > 48,000 probes measuring > 25,000annotated genes and additional transcripts. Bead-level data were processed by methods previously described(1). In brief, outlier-filtered bead values underwent modelbased background correction, (2) quantile normalization, filtering for probe quality, (3) and log2 transformation. Candidate differentially-expressed probes (DEPs) were then determined for each of 3 independent experiments, comparing cells cultured under hypoxia or normoxia. The significantly deferentially expressed genes in relation to hypoxia were determined using strict statistical criteria with P value < 0.01, false discovery rate q statistic < 0.1(4). The 1158 genes were significantly upregulated in the OCI-AML3 cells and 69 in REH with respect to hypoxia. Among those genes 41 genes were upregulated in both sets. Final DEPs were those candidates found in all 3 experiments, and their fold-change was determined from the average of mean bead values for each experiment.

Gene expression analysis by Nanostring technology. Mononuclear cells from BM and peripheral blood samples from patients with acute leukemia or healthy subjects were lysed to isolate total mRNA. For each sample, 100 ng of mRNA was used to set

up Nanostring codeset; the genes included in the analysis are listed in Supplementary Table S3. The samples were processed per the manufacturer's instructions. For analysis, each sample was normalized to the codeset-positive controls and then to the housekeeping genes. Samples were normalized to each other by comparing to the average of all samples. Genes with less than 30 counts were considered non-expressed and eliminated from further analysis.

Hyperpolarized Magnetic Resonance Spectroscopy.

For hyperpolarized ¹³C acquisition, a 15-mm axial slice was prescribed to cover the full extent of the mouse femur (Fig. 2A). A slice-selective pulse-acquisition sequence (TR = 1,500 ms; 15° flip angle; 5 KHz spectral bandwidth; 2048 spectral points; 100 repetitions) was triggered by the HyperSense. Shortly after scan initiation, 200 μ L of the hyperpolarized [1-¹³C]pyruvate solution was administered over a ~12-s period. Data were processed to generate dynamic curves characterizing the arrival of hyperpolarized pyruvate and its chemical conversion into lactate. Normalized lactate, defined as the ratio of total cumulative lactate to the total HP carbon signal, was calculated for each ¹³C scan.

In Vitro 1-¹³C Pyruvic Acid Feeding Studies and High Resolution Nuclear Magnetic Resonance (NMR) Experiments

AML/ETO cells were co-cultured with human mesenchymal stromal cells (MSC) cells in MEM media supplemented with 10% FBS until a cell density a 0.5×10^6 cells/ml was reached. When that concentration was achieved, half of the culture was incubated with media containing 1 mM of 1-¹³C pyruvic acid and the other half not (control). Three 150 μ l aliquots were taken at time of addition of the media (t_o time points), 1 hour into the incubation (t₁ time points), and 8 hours into the incubation (t₈ time points). After 8 hours, the media was removed.

Sample Preparation: NMR standard solution was added directly to the media aliquots (final concentration, 5 mM 3-(trimethylsilyl)-1-propanesulfonic acid-d₆ sodium salt (DSS-d₆) (613150, Sigma-Aldrich, St. Louis, MO), 5 mM potassium phosphate pH 8). *Analysis of Samples:* Nuclear magnetic resonance (NMR) spectroscopy was performed at MD Anderson's NMR facility. All one dimensional ¹³C spectroscopy were performed on a 500 MHz Bruker Avance III HD NMR equipped with a Prodigy BBO CryoProbe (Billerica, MA).

All media aliquot samples were analyzed using 1D proton-decoupled 13C spectroscopy (256 scans, 29761-Hz spectral width, 10 second relaxation delay, 30-degree flip angle). The data was analyzed using MestreNova software package. All 13C spectra were processed with a line broadening of 1 Hz, magnitude phasing, baseline correction, and referenced to trimethylsilyl moiety of DSS-d6 at 0 ppm. The chemical shifts for the metabolites were determined using the Biological Magnetic Resonance Data Bank (University of Wisconsin). Integration values were determined for the NMR standard (DSS-d6), 1-13C pyruvate, and 1-13C lactate. The ratio of the integration for the metabolite resonance over the integration value for DSS-d6 resonance was used to normalize samples (Supplemental Table 4).

Three-dimensional spheroids. Cell monolayers were maintained in log-phase. To create three-dimensional (3D) spheroids, cells were dissociated and centrifuged, and the resulting cell pellet was first resuspended in medium at 50×10^6 cells/mL and this

suspension was mixed 50/50 with Matrigel. To generate mesenchymal stromal cell (MSC)–leukemic cell spheroids, stromal cells were mixed with leukemic cells at a ratio of 2:1. Next, 1.0 μ L of the Matrigel/cell mixture was dropped into 3 mL of medium and incubated overnight. The next day, spheroids were transferred to 15-mL tubes. A spheroid pellet was formed after 30 min incubation at room temperature. The medium was removed and spheroids were mixed 50/50 with collagen I (BD Biosciences) on ice. Final collagen I concentration in the culture was 2 mg/mL. Next, 100- μ L aliquots of the spheroid/collagen mixture were transferred to the bottom chambers of a Chambered Coverglass System (Thermo Scientific). After 20 min of polymerization at 37°C, 400 μ L of medium was added to each chamber. The resulting spheroid suspensions were incubated at 37°C, 96% humidity, and 5% CO₂ for several days; they were then analyzed by confocal microscopy (Olympus FluoView FV1000, Olympus America).

To assess TH-302 cytotoxicity, spheroids were set up directly in 96-well plates. Briefly, 1.0 μ L of the Matrigel-cell mixture was dropped into each well, which contained 50 μ L of medium containing TH-302 at different concentrations; this was followed by addition of 50 μ L of medium containing collagen I. Four wells were used for each condition. After 72 h of incubation, viability was determined by WST-1 assay (Roche Applied Sciences) with a SAFIRE microplate fluorescence spectrometry system (Tecan). Data were analyzed, EC-50 determined, and graphs prepared by GraphPad Prism-4 software (GraphPad).

Murine tumor models. All animal work was done in accordance with a protocol approved by the institutional animal care and use committee of MD Anderson Cancer Center. For the syngeneic AML model, 7- to 9-week-old C57Bl/6 mice were

transplanted via tail vein injection with murine BM cells (1×10⁶ viable cells per mouse) expressing the AML1/ETO oncoprotein and green fluorescent protein (GFP) (cells provided by Dr Scott Lowe, Cold Spring Harbor, NY; (5)). When at least 5% of GFP-positive cells were detected in peripheral blood by FACS, mice were randomized to receive vehicle (control) or chemotherapy (N=7 or 12, respectively) as follows: vehicle or cytarabine 100 mg/kg intraperitoneally for 5 days or vehicle or doxorubicin 3 mg/kg for 3 days intravenously. One week after finishing treatment, mice from the chemotherapy group were randomized again to receive vehicle or TH-302 (N=6/group). TH-302 was administered at 50 mg/kg intraperitoneally 5 days a week for 2 weeks. Leukemia burden was monitored periodically by noninvasive *in vivo* optical imaging; mice were anesthetized and placed in the IVIS-200 imaging system (Xenogen) after injection of the luciferase substrate colenterazine (Biotium).

For the primary AML xenograft model, BM cells from NSG mice engrafted with a human AML sample were injected intravenously into irradiated (300 cGy) NSG secondary recipients (0.3×10^6 cells/mouse). Starting on day 37, TH-302 at 75 mg/kg or vehicle (PBS) was administered intraperitoneally 3 times a week for 2 weeks (N=10/group). Leukemia burden was monitored weekly by determining the number of circulating human CD45+ cells. For secondary transplant experiments, BM cells from control or TH-302–treated mice (collected after 2 weeks of therapy) were serially diluted and injected intravenously into secondary NSG recipient mice at 0.01 cells/mouse (N=5 mice/dilution).

For the MOLM-13 FLT3ITD model, NSG mice were injected intravenously with 1×10^6 MOLM-13 cells labeled with GFP/luciferase. On day 3 after cell injection, mice were

randomized into four groups and treated according to the following schema: vehicle; TH-302 50 mg/kg 5 times a week intraperitoneally for 3 weeks; sorafenib 5 mg/kg by daily oral gavage for 2 weeks; or a combination of TH-302 and sorafenib at the same doses and schedules. Leukemia progression was evaluated periodically by luciferase imaging as already described.

In all models, overall survival of the mice in each group was estimated by the Kaplan-Meier method.

Immunohistochemistry. Mice were euthanized and their organs were harvested and fixed by immersion in 4% paraformaldehyde. Immunostaining for hypoxia marker PIMO and hematoxylin and eosin staining were performed as previously described(6).

References

1. Ma W, Wang M, Wang ZQ, Sun L, Graber D, Matthews J, et al. Effect of long-term storage in TRIzol on microarray-based gene expression profiling. Cancer Epidemiol Biomarkers Prev. 2010;19:2445-52.

2. Ding LH, Xie Y, Park S, Xiao G, Story MD. Enhanced identification and biological validation of differential gene expression via Illumina whole-genome expression arrays through the use of the model-based background correction methodology. Nucleic acids research. 2008;36:e58.

3. Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, Darot JF, Ritchie ME, Lynch AG, et al. A reannotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic acids research. 2010;38:e17.

4. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57:289-300.

5. Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W, et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 2009;23:877-89.

6. Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H, et al. Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoSONE. 2011;6:e23108.

Cell type	Cell line	Cytogenetics/molecular characteristics	Source
B-ALL	Nalm-6	Pre-B ALL	ATCC
	REH	Pre-B ALL	ATCC
	OCI-		
AML	AML3	NPM1, DNMT3A, N-Ras-mutant	Dr Mark Minden
	MOLM-13	FLT3-ITD	DSMZ
	KG-1	p53-mutant	ATCC
			Dr Miloslav Beran
CML	KBM-5	BCR-ABL	(MDACC)

Supplementary Table 1. Cell line characteristics

Supplementary Table S2. Patient characteristics

Patient #	Diagnosis	Source	Cytogenetics	Molecular diagnostic	% of	Assay
					blasts	-
1	B-ALL	BM	Pseudodiploid Clone 46,X,-	No monoclonal	97	Cytotoxicity
			Y,add(1)(q25),+21[20]	immunoglobulin heavy		
				chain gene rearrangement		
2	B-ALL	PB	Pseudodiploid	Monocional	39	Cytotoxicity
			clone46,XX,t(1;4)(q21;q35),t(5;9)(q23;q34),	immunoglobulin heavy		
			+der(5)t(5;9),-20[12]; Hyperdiploid	chain gene		
			metaphases	rearrangements,		
			47,XX,t(1;4)(q21;q35),t(5;9)(q23;p24),+der(5	Monoclonal T-cell receptor		
)t(5;9),+8,-20[1]	gamma chain gene		
				rearrangements		
3	AML	BM	47,XY,inv(16)(p13.1q22),+22[20]	CBFB gene rearrangement	83	Cytotoxicity
				with a deletion of the 3'		
				gene locus		
4	AML	PB	del(11)(p13p15)[6];	FLT3 ITD	48	Nanostring
			del(7)(q32q34),del(11)(p13p15)[12]			_
5	AML	PB	39~45,X,del(X)(p11.2p22.1),+1,del(1)(q32q4	No FLT3-ITD, RAS or	99	Nanostring
			2),del(3)(p21p25),add(5)(p15),	NPM1 mutations		-
			-6,-7,-9,-10,del(11)(q23q24),-12,-13,-14,-15,-			
			15,-17,-20,add(21)(p11.2),-			
			22,+3~6mar[cp20]			
7	AML	PB	46,X,-Y,+8[6]	e1a2 BCR-ABL	31	Nanostring
						_
8	AML	PB	t(9:11)(p22:g13)[3]	No CEBPA, FLT3-ITD, KIT,	24	Nanostring
· ·	/		((,,,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RAS or NPM1 mutations		laneoung
9	T-ALL	BM	Diploid male karvotype 46 XY[20]	oligocional pattern of T-	98	Nanostring
•				cell receptor gamma and		italiootilig
				beta chain gene		
				rearrangements		
				Jean angemente		
10	B-ALL	PR	8 XY del(4)(n14) t(9:22)(a34:a11 2) der(14)t(b3a2 BCR-ABI	89	Nanostring
			1.14 (a12.a32) der(15)(a22) $\pm 21 \pm der(22) \pm (0.22)$			Ranosting
			$22)[5]$ ish $t(9.22)(\Delta RI 1-$			
			:BCR+,ABL1+).der(22)(BCR+,ABI 1+)[2]			

11	B-ALL	PB	46,Y,- X,t(5;17)(q13;q21),add(8)(p23),t(9;22)(q34;q 11.2),del(12)(p13),del(20) (q11.2),- 21,+2mar[20]	b2a2 BCR-ABL f	96	Nanostring
12	B-ALL	РВ	49,XX,+del(X)(q24q26),+8,t(9;22)(q34;q11.2) ,+der(22)t(9;22)[17]//	e1a2 BCR-ABL	91	Nanostring
13	T-ALL	BM	47,XY,der(5)t(5;12)(q31;q13),der(9)t(9;9)(p2 1;q11),-12,add(13)(q34), add(14)(p12),del(17)(p12),+18,-21,+2mar[5]	monoclonal T-cell receptor beta chain gene rearrangements, oligoclonal pattern of T- cell receptor gamma chain gene rearrangements	98	Nanostring
14	T-ALL	РВ	46,XY,del(2)(p21p23),add(7)(q32),del(9)(q22),add(10)(q24),-13,-14,+2mar[1]	Monoclonal T-cell receptor beta chain gene rearrangements	27	Nanostring
15	AML	PB	6,X,t(X;2)(q22;q21),add(3)(q21),del(5)(q13q 33),del(7)(q22q34),del(12)(p11.2p13),del(20) (q11.2q13.1)[18]		61	Nanostring
18	AML	PB	Hyperdiploid clone 47,XY,+9[3]	IDH2 (R140Q); KRAS (G12C)	50	Nanostring
19	AML	BM (no PIM)	46,XX,t(3;5)(p23;q15)?c[20	mutation in exon 12 of NPM1 gene; IDH1 (R132S)	40	Nanostring
20	AML	РВ	Pseudodiploid clone 46,XY,del(5)(q13q33),i(8)(q10),add(15)(p13), -17,i(21)(q10),+mar[7]; Hyperdiploid clone 47,XY,del(5)(q13q33),i(8)(q10),+i(8)(q10),- 17,add(19)(p13),i(21)(q10),+mar[6]	No CEBPA, FLT3-ITD, KIT, RAS, IDH1/2 or NPM1 mutations	83	Nanostring
21	AML	РВ	41~45,Y,del(X)(p11.2p22.1),add(1)(p36.3),a dd(3)(p25),del(5)(q31q35)del(7)(p14p15),+1 1,del(11)(p11.1),-12,-15,-17,- 18,del(18)(q21.1),psu dic(20;12)(q13.3;p11.2),add(21)(q22),+1~4m ar[cp20]	NRAS(G12D)	48	Nanostring

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; B-ALL, B-cell ALL; BM, bone marrow; PB, peripheral blood; T-ALL, T-cell ALL

Supplemental Table S3. List of upregulated DEPs in hypoxia.

GENE	Name	PROBE_ID	REFSEQ_ID
Abbreviation			
GAPDH	glyceraldehyde-3-	ILMN_2038778	NM_002046.3
	phosphate		
	dehydrogenase		
ARNT	aryl hydrocarbon	ILMN_1697519	NM_178427.1
	receptor nuclear		
	translocator		
BNIP3	BCL2/adenovirus	ILMN_1724658	NM_004052.2
	E1B 19kDa		
	Interacting protein 3		
DDI14	DNA-damage-	ILMN_1661599	NM_019058.2
501.114	Inducible transcript 4		
EGLN1	egi-9 family hypoxia-	ILMN_1749892	NM_022051.1
	Inducible factor 1		
EPAS1	endothelial PAS	ILMN_1760034	NM_001430.3
	domain protein 1		
HIF1A	nypoxia inducible	ILMN_1681283	NM_001530.2
	factor 1 alpha		
HIF1AN	hypoxia inducible	ILMN_1681812	NM_017902.2
	factor 1, alpha		
	subunit innibitor		
HK2	hexokinase 2	ILMN_1/23486	NM_000189.4
HMOX1	heme oxygenase	ILMN_1800512	NM_002133.1
	(decycling) 1		
LDHA	lactate	ILMN_1807106	NM_005566.1
	dehydrogenase A		
NDRG1	N-myc downstream	ILMN_1809931	NM_006096.2
	regulated 1		
PDK1	pyruvate	ILMN_1670256	NM_002610.3
	dehydrogenase		
	kinase, isozyme 1		
PGK1	phosphoglycerate	ILMN_1755749	NM_000291.2
	kinase 1		
PGM1	phosphoglucomutase	ILMN_1800659	NM_002633.2
	1		
SERPINE1	serpin peptidase	ILMN_1744381	NM_000602.1
	inhibitor, clade E,		
	member 1		
SLC2A1	solute carrier family 2	ILMN_1809256	NM_006516.1
	(facilitated glucose		
	transporter), member		
	1		

TGFA	transforming growth factor, alpha	ILMN_1805175	NM_001099691.1
TGFB1	transforming growth factor, beta 1	ILMN_1665766	NM_000660.3
VIM	vimentin	ILMN_1782538	NM_003380.2
VLDLR	very low density lipoprotein receptor	ILMN_1675092	NM_003383.3

Supplemental Table S3. Differentially-expressed probes (DEPs) were determined for each of 3 independent experiments, comparing cells cultured under 21% O_2 or 1% O_2 with a significance threshold of p-value < 0.01 and false discovery rate q statistic < 0.1. **ILMN_Gene:** Illumina gene nomenclature.

Supplemental Table S4. 1-13C pyruvate uptake and 1-13C lactate production in cell culture.

¹³ C Chemical Shift	Pyruvate at t ₀	Pyruvate at t ₁	Pyruvate at t ₈
173.0 ppm Pyruvate	0.623 <u>+</u> 0.084	0.554 <u>+</u> 0.007	0.067 <u>+</u> 0.021
185.2 ppm Lactate	0*	0.121 <u>+</u> 0.020	0.846 <u>+</u> 0.039

 T_0 is beginning of the experiment, t1 and t8 refers to 1 and 8 h into the incubation, respectively.

*Peaks above background for lactate were not seen in t_0 samples.

Normalized integration values given as Mean + Standard Error of the Mean. Based on these values, approximately 11% of the pyruvate is taken up by the culture in 1 hour and increases to 89% in 8 hours.

Cell line	Normoxic IC₅₀(µM)	Hypoxic IC₅₀(µM)	HCR
KBM5	1.8	0.04	44
KG-1	3.3	0.04	81
OCI-AML3	2.6	0.01	260
MOLM-13	2.5	0.17	14
REH	8.7	0.8	11
Nalm6	1.3	0.005	257

Supplemental Table S5. TH-302 cytotoxic activity against leukemia cell lines

HCR, hypoxic cytotoxicity ratio (IC₅₀normoxia/IC₅₀ hypoxia)