APPENDIX TABLE OF CONTENTS

SUPPLEMENTARY METHODS	Page 2
APPENDIX SCHEME S1	Page 3
APPENDIX TABLE S1	Page 8
APPENDIX TABLE S2	Page 8
APPENDIX TABLE S3	Page 10
APPENDIX TABLE S4	Page 11
APPENDIX TABLE S5	Page 11
APPENDIX FIGURE S1	Page 12
APPENDIX FIGURE S2	Page 13
APPENDIX FIGURE S3	Page 14
APPENDIX FIGURE S4	Page 16
APPENDIX FIGURE S5	Page 17
APPENDIX FIGURE S6	Page 19
APPENDIX REFERENCES	Page 21

APPENDIX

SUPPLEMENTARY METHODS

Dvl PDZ domain purification

E. coli strain BL21 (DE3) was transformed with plasmid DNA encoding Dvl-1^{247-³⁴¹ (the Dvl PDZ domain), and the cells were grown in M9 minimal medium containing ¹⁵N isotope for 17 hours at 21°C and after then 1 mM isopropyl-1-thio- β -D-thiogalactopyranoside was treated. His-tagged Dvl-1 was purified using Ni-NTA affinity chromatography, and imidazole, which was present at a high concentration, was removed using a PD-10 desalting column. After cleavage of the His-tag using the tobacco etch virus (TEV) protease, we conducted Ni-NTA affinity chromatogra`phy to obtain pure Dvl PDZ domain. Finally, Dvl PDZ was purified using size exclusion gel chromatography on a Superdex 75 column (Amersham Biosciences) equilibrated with 100 mM potassium phosphate pH 7.5, 0.5 mM EDTA and 2 mM DTT. The final concentration of Dvl-1 used in the nuclear magnetic resonance (NMR) titration was 0.6 mM.}

KY-02061 and KY-02327 Synthesis

All solvents were dried by standard methods prior to use. Ethyl 5-benzyloxyindole-2-carboxylate and other chemicals were purchased from Aldrich Co. Analytical thin layer chromatography (TLC) was performed on E. Merck pre-coated (0.25 mm) silica gel 60 F254 plates. Flash column chromatography was performed on silica gel 40 (Scientific Adsorbents Incorporated, Microns Flash). NMR experiments were performed using a deuterated solvent such as CDCl₃ as an internal standard.

Appendix Scheme S1. KY-02061 and KY-02327 Synthesis

1. Ethyl 5-(benzyloxy)-1-(2-ethoxy-2-oxoethyl)-1H-indole-2-carboxylate synthesis. 5-Benzyloxyindole-2-carboxylate (1, 4.43 g, 15 mM) in DMF (50 ml) was added to NaH (60% dispersed in mineral oil, 0.9 g, 22.5 mM) portion-wise at 0°C. After 30 min stirring, ethyl bromoacetate (3.3 ml, 22.5 mM) was added dropwise. The resultant mixture was stirred at room temperature for 16 hours. After the reaction was completed, the excess NaH was quenched with water (50 ml), and the product was extracted with ethyl acetate (EtOAc, 50 ml, 3 times). The combined organic layer was dried over Na₂SO₄ and evaporated. The crude compound was purified by column chromatography to yield the title compound (**2a**) as a pale yellow solid (6.14 g, 99%). ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.09 (m, 9H), 5.26 (s, 2H), 5.10 (s, 2H), 4.37-4.30 (q, J = 7.0 Hz, 2H), 4.23-4.17 (q, J = 7.0 Hz, 2H), 1.40-1.35 (t, J = 7.0 Hz, 3H), 1.27-1.22 (t, J = 7.0 Hz, 3H); ¹³C NMR (76 MHz, DMSO): δ 169.1, 162.2, 154.2, 137.4, 135.2, 128.7, 128.1, 128.0, 127.7, 126.5, 117.6, 110.8, 110.7, 104.8, 70.8, 61.6, 60.8, 46.4, 14.4, 14.3; LC/MS(ESI): 382 (M+H⁺).

2. *t*-butyl 5-(benzyloxy)-1-(2-ethoxy-2-oxoethyl)-1H-indole-2-carboxylate synthesis. The title compound (2b, 7.0 g, >99%) was prepared using similar reaction conditions to the synthesis of 2a. ¹H NMR (300 MHz, CDCl₃): δ 7.50-7.32 (m, 5H), 7.28-7.11 (m, 3H), 5.20 (s, 2H), 5.12 (s, 2H), 4.40-4.32 (q, J = 6.0 Hz, 2H), 1.46 (s, 9H), 1.44-1.38 (t, J = 9.0 Hz, 3H); ¹³C NMR (76 MHz, DMSO): δ 168.0, 162.0, 153.9, 137.3, 135.0, 128.5, 128.1, 127.9, 127.5, 126.3, 117.3, 110.6, 110.4, 104.5, 82.1, 70.6, 60.6, 46.9, 28.0, 14.3.; GC/MS(EI): 409 (M⁺). 3. Ethyl 1-(2-ethoxy-2-oxoethyl)-5-hydroxy-1H-indole-2-carboxylate synthesis.

The alkylated indole (**2a**, 0.3 g, 0.76 mM) was debenzylated by a Pd-catalyzed reaction using 10% Pd/C (30 mg) in MeOH (5 ml) and AcOH (0.1 ml) under balloon pressure of H₂ gas. After 4 hours stirring at room temperature, the mixture was filtered, and the solvent was evaporated. Then, the title compound (**3**) was purified by column chromatography (0.23 g, 99%). ¹H NMR (CDCl₃, 300 MHz): δ 7.23 (s, 1H), 7.15 (d, *J* = 8.9 Hz, 1H), 7.04 (s, 1H), 6.94 (d, *J* = 8.9 Hz, 1H), 5.26 (s, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (76 MHz, DMSO): δ 169.5, 162.3, 150.6, 135.1, 128.3, 126.8, 116.3, 110.5, 110.4, 106.4, 61.7, 60.9, 46.4, 14.4, 14.3; LC/MS(ESI): 292 (M+H⁺).

4. Ethyl 1-(2-ethoxy-2-oxoethyl)-5-(tosyloxy)-1H-indole-2-carboxylate KY-02061 synthesis. The phenolic compound (3, 0.9 g, 3.1 mM) and TEA (0.47 ml, 3.4 mM) were dissolved in CH₂Cl₂ (10 ml), and then *p*-TsCl (0.65 g, 3.4 mM) was added. After 1 day stirring, the reaction mixture was diluted with water (10 ml), and the product was extracted with CH₂Cl₂ (10 ml, 3 times). The combined organic layer was dried over Na₂SO₄ and evaporated. The crude compound was purified by column chromatography to yield the title compound (**KY-02061**, 1.2 g, 85%). ¹H NMR (300 MHz, CDCl₃): δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.30-7.27 (m, 3H), 7.17 (d, *J* = 9.1 Hz, 1H), 7.00 (d, J = 9.1 Hz, 1H), 5.25 (s, 2H), 4.34 (q, J = 7.2 Hz, 2H), 4.21 (q, J = 7.1 Hz, 2H), 2.44 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H);
¹³C NMR (76 MHz, DMSO): δ 168.7, 161.9, 145.3, 144.3, 137.7, 132.5, 129.8, 129.3, 128.7, 126.1, 120.5, 116.0, 111.3, 110.5, 61.8, 61.1, 46.5, 21.8, 14.4, 14.3;
LC/MS(ESI): 446 (M+H⁺).

Ethyl 5-(benzyloxy)-1-(2-oxo-2-((2-(piperidin-1-yl)ethyl)amino)ethyl)-1H-5. indole-2-carboxylate synthesis. The N-alkylated compound (2b, 6.1 g, 15 mM) in CH₂Cl₂ (150 ml) was treated with TFA (11.4 ml, 150 mM). The resultant mixture was stirred at room temperature for 10 hours. After evaporation, the hydrolyzed product (5.3 g, 99%) was obtained as a pale-yellow solid. The resultant acid (2.8 g, 8.0 mM), together with 2-aminoethyl-1-piperidine (3.1 g, 24 mM), HBTU (7.6 g, 20 mM), and DIPEA (3.1 g, 24 mM), was dissolved in DMF (27 ml) and stirred at room temperature overnight. Then, the reaction mixture was diluted with water (30 ml), and the product was extracted with EtOAc (30 ml, 3 times). The combined organic layer was dried over Na₂SO₄ and evaporated. The crude compound was purified by column chromatography to yield the title compound (4, 3.7 g, >99%). ¹H NMR (300 MHz, DMSO: δ 8.22 (br s, 1H), 7.45-7.02 (m, 9H), 5.14 (s, 2H), 5.09 (s, 2H), 4.27-4.20 (q, J = 6.0 Hz, 2H), 3.04-3.2.86 (m, 6H), 1.71-1.54 (m, 6H), 1.30-1.25 (t, J = 6.0 Hz, 3H); 13 C NMR (76 MHz, DMSO): δ 168.9, 161.7, 153.8, 137.7, 135.6, 128.8, 128.4, 128.0, 126.1, 122.6, 117.2, 112.3, 110.2, 105.7, 104.5, 70.0, 60.7, 55.3, 52.9, 34.3, 23.2, 21.6, 14.6; LC/MS(ESI): 464 (M+H⁺).

6. Ethyl 5-hydroxy-1-(2-oxo-2-((2-(piperidin-1-yl)ethyl)amino)ethyl)-1Hindole-2-carboxylate KY-02327 synthesis. The ouabain (OBn) compound (4, 1.2 g, 2.5 mM) was debenzylated using the same Pd-catalyzed method described above (3). The reaction produced KY-02327 (0.93 g, >99%) as an off-white solid after purification using column chromatography. ¹H NMR (300 MHz, CD₃OD): δ 7.32-7.29 (d, J = 9.0 Hz, 1H), 7.21 (s, 1H), 7.02-7.01 (d, J = 3.0 Hz, 1H), 7.01-6.92 (dd, J = 9.0, 3.0 Hz, 1H), 5.17 (s, 2H), 4.36-4.29 (q, J = 6.0 Hz, 2H), 3.59-3.55 (t, J = 6.0 Hz, 2H), 3.30-3.19 (m, 6H), 1.83-1.62 (m, 6H), 1.40-1.36 (t, J = 6.0 Hz, 3H); ¹³C NMR (76 MHz, DMSO): δ 169.0, 161.8, 152.3, 134.9, 128.0, 126.6, 116.8, 111.8, 109.7, 105.3, 60.7, 55.4, 52.9, 47.6, 34.3, 23.2, 21.6, 14.5; LC/MS(ESI): 374 (M+H⁺).

APPENDIX TABLES

Neme	Dvl-CXXC5 in vitro	Relative ALP	Metabolic Stability (%)	
Name	binding IC_{50} (μ M) ^a	activity (%) ^b	Rat	Human
KY-	24	170	F1 . 24	
02061	24	1/3	5.1 ± 2.4	25.2 ± 3
KY-	2.1	227	11.0 . 1.40	
02327	5.1	227	11.9 ± 1.49	33.5 ± 6.34

Appendix Table S1. Activities and metabolic stability of KY-02061 and KY-02327

^aThe Dvl-CXXC5 *in vitro* binding assay was performed with 0.1, 1, 3, 10, 30 and 100 μ M of each compound. The IC₅₀ values were calculated using linear regression.

 $^{b}MC3T3E1$ cells were cultured in differentiation media with 10 μ M of each compound for 4 days and ALP activity levels were quantified to monitor osteogenic differentiation of the cells.

Appendix Table S2. List of pathway-specific target genes

Pathway	Target gene	Primer sequence	Reference
	Axin2	Fwd: 5'-AGGTCCTGGCAACTCAGTAACAG-3' Rev: 5'- CGCGAACGGCTGCTTATT-3'	Railo <i>et</i> <i>al</i> , 2009
Wnt	Fos-like antigen 1 (Fosl1)	Fwd: 5'-ACCTTGTGCCAAGCATCGA-3' Rev: 5'- AATGAGGCTGCACCATCCA-3'	Germann <i>et al</i> , 2003
	WNT1 inducible signaling pathway protein 1 (Wisp1)	Fwd: 5'-TGAGCATTTGGAGAGCCAAGA-3' Rev: 5'- AGAAGATTAAGCAAGCCATGTCAGT-3'	Railo <i>et</i> <i>al</i> , 2009
	Activating transcription factor 4 (Atf4)	Fwd: 5'-CGATGCTCTGTTTCGAATGGA-3' Rev: 5'- CCAACGTGGTCAAGAGCTCAT-3'	Ranganat han <i>et al</i> , 2007
TGFβ	Cyclin-dependent kinase inhibitor 1B (Cdkn1b)	Fwd: 5'-TCTTCGGCCCGGTCAAT-3' Rev: 5'- CATATCCCGGCAGTGCTTCT-3'	Donovan <i>et al</i> , 2002
	Epithelial membrane protein 1 (Emp1)	Fwd: 5'-GGCTGCTGGGTCACACACT-3' Rev: 5'- CCTGAACCACCATCAGAACTTG-3'	Ranganat han <i>et al</i> , 2007

	BCL2-like 1	Fwd: 5'-CTGTGCGTGGAAAGCGTAGA-3'	Pahl,
	(Bcl211)	Rev: 5'- CCAACTTGCAATCCGACTCA-3'	1999
INFKD	Tumor necrosis	Fwd: 5'-TCCAGGCGGTGCCTATGT-3'	Pahl,
	factor(Tnf)	Rev: 5'- GCCCCTGCCACAAGCA-3'	1999
JAK /STAT	Suppressor of cytokine signaling 3 (Socs3)	Fwd: 5'-CGCGCACAGCCTTTCAG-3' Rev: 5'- CCGGCCGGTCTTCTTGT-3'	Murray, 2007
	BCL2-associated	Fwd: 5'-GGCCTTTTTGCTACAGGGTTT-3'	Bouvard
	X protein (Bax)	Rev: 5'- GTGTCTCCCCAGCCATCCT-3'	<i>et al.</i> 2000
p53	BCL2 binding	Fwd: 5'-TGAACACTCTTTTTGTTAGCTTTACCA-	
I	component 3	3'	Han <i>et al</i> ,
	, (Bbc3)	Rev: 5'- CACCGTTTCTTTCATGTCCTTACA	2001
Notch	Hairy and enhancer of split 1 (Hes1)	Fwd: 5'-CCCCAGCCAGTGTCAACAC-3' Rev: 5'- TGTGCTCAGAGGCCGTCTT-3'	Schwanbe ck <i>et al</i> , 2011
	Jagged 1 (Jag1)	Fwd: 5'-ACACAGGGATTGCCCACTTC-3' Rev: 5'- AGCCAAAGCCATAGTAGTGGTCAT-3'	schwanbe ck <i>et al</i> , 2011
PPAR	Acyl-CoA synthetase long- chain family member 3 (Acsl3)	Fwd: 5'-CGCTGCACAGGCGTGTT-3' Rev: 5'- ATGGCTGGACCTCCCAGAGT-3'	Cao <i>et al</i> , 2010
_	Oxidized low density lipoprotein receptor 1 (Olr1)	Fwd: 5'-CCTGTTGCCGCATGAAAGA-3' Rev: 5'- CCCTCTGCCTGCACTTGAG-3'	Chui <i>et al</i> , 2005
Oridati va	Ferritin heavy polypeptide 1 (Fth1)	Fwd: 5'-AAGATGGGTGCCCCTGAAG-3' Rev: 5'- CCAGGGTGTGCTTGTCAAAGA-3'	Huang <i>et</i> <i>al</i> , 2013
stress	Glutamate- cysteine ligase, catalytic subunit (Gclc)	Fwd: 5'-GGCCACTATCTGCCCAATTG-3' Rev: 5'- CACGTAGCCTCGGTAAAATGG-3'	Han <i>et al</i> , 2008
	Adrenomedullin (Adm)	Fwd: 5'-GCCAGGCTCATGCCAGAA-3' Rev: 5'- CCCCTGCCCGGAGAGTA-3'	Ke & Costa, 2006
Hypoxia	Erythropoietin (Epo)	Fwd: 5'-CCCCCACGCCTCATCTG-3' Rev: 5'- TGCCTCCTTGGCCTCTAAGA-3'	Ke & Costa, 2006
	Vascular endothelial growth factor a (VEGFa)	Fwd: 5'-TCTTCAAGCCGTCCTGTGTG-3' Rev: 5'-ATGTTGCTCTCTGACGTGGG-3'	Forsythe <i>et al</i> , 1996

Hedgehog	Bone morphogenetic protein 2 (BMP2)	Fwd: 5'-ATCCAGTCTTGCCGCCTC-3' Rev: 5'- GCCTCCTCCTCCTTCTCC-3'	Marigo <i>et</i> <i>al</i> , 1996
Patched 1 (Ptch1)	Fwd: 5'-GCTGGAGGAGAACAAGCAAC-3' Rev: 5'- GTCAAATGCATCCTGAAGTC-3'	Marigo <i>et</i> <i>al</i> , 1996	
Control	β-actin	Fwd: 5'-GGATGCAGAAGGAGATTACT-3' Rev: 5'- CCGATCCCACACAGAGTACTT-3'	-

Appendix Table S3. Bacterial reverse mutation assay with KY-02327

Tester	Niereee	Dose	Revertant colonies/pate (Mean) [Factor] ^a		
Strain	Name	(µg/plate)	Without S-9 mix	With S-9 mix	
	Vehicle ^b	0	19 ± 4	19 ± 2	
TA-98	KY- 02327	1000	19 ± 4 [1.0]	16 ± 1 [0.8]	
	2-NF ^c	1	178 ± 16 [9.4]	n.a.	
B.P ^c	B.P ^c	2	n.a.	205 ± 9 [10.8]	
	Vehicleb	0	122 ± 4	117 ± 4	
TA-100	KY- 02327	1000	123 ± 6 [1.0]	117 ± 8 [1.0]	
	S.A ^c	1	689 ± 20 [5.6]	n.a.	
	B.P ^c	2	n.a.	724 ± 24 [6.2]	

^aNumber of revertant colonies of treated plate/Number of revertant colonies of vehicle control plate (Maron & Ames, 1983).

^bNegative control. Vehicle: DMSO

^cPositive control. S.A: Sodium azide, 2-NF: 2-nitrofluorene, B.P: Benzo(a)pyrene,

Appendix Table S4. Cytochrome P450 (CYP) inhibition assay with 10 μ M KY-02327

Compounds	Inhibition (%)		
Compounds	1A2	C29	3A4
KY-02327	0.0	0.0	0.0
a-Naphthoflavone	95.0	n.a.	n.a.
Sulfaphenazole	n.a.	80.5	n.a.
Ketoconazole	n.a.	n.a.	93.5

^aInhibition was measured using fluorogenic P450 substrates (Marks et al, 2002).

Appendix Table S5. Human Ether-à-go-go Related Gene (hERG) binding assay with 10 μ M KY-0232

Compounds	Inhibition (%) ^a
KY-02327	10.87±2.069

^aInhibition was measured using fluorescence polarization method (Piper *et al*, 2008).

APPENDIX FIGURES AND FIGURE LEGENDS

Appendix Figure S1. Screening and identification of DBM-mimetic small molecules.

- A A Dishevelled (Dvl)-CXXC5 *in vitro* binding assay using polyarginine conjugated Dvl binding motif (PolyR-DBM) was performed for 2 μM compounds from commercial library.
- B Autofluorescence of the compounds (each 2 μ M) containing an indole ring and a carboxylic acid group was measured using a Fluorstar Optima microplate reader. The data are the mean \pm s.d. (error bars). [*n*=2]

Appendix Figure S2. The effects of Dvl-CXXC5 binding small molecule inhibitors on primary calvaria cells.

- A Primary calvaria cells were treated with 2 μ M of each compound for the indicated times. The cells were subjected to an MTT assay (OD₅₉₀ reading) to measure cell viability. The data are the mean ± s.d. (error bars). [*n*=3]
- B Primary calvaria cells were treated with 2 μ M of each compound for 4 days. ALP activity levels were visualized by ALP staining. [n=2]

Appendix Figure S3. The binding of DBM to Dvl PDZ domain.

A-C NMR titration analyses for Dvl PZD domain with DBM. ¹H-¹⁵N-HSQC analyses were performed to analyze the interaction of ¹⁵N-labelled Dvl-PDZ domain with DBM. The ¹H-¹⁵N-HSQC spectrum of different molar

ratios (Dvl PDZ domain:DBM) are displayed as red (1:0), orange (1:5), purple (1:10), cyan (1:15), green (1:20) and blue (1:25) (A, residues with meaningful chemical shift change are indicated by arrows). The residues with chemical shift changes ($\Delta\delta$) greater than 0.05 are visualized as a stick model on the ribbon representation of the Dvl PDZ domain structure (B). Plot of $\Delta\delta$ as a function of residue number in molecular ratio 1:25 (C, a red-colored line indicates the line for $\Delta\delta$ =0.05).

D, E Molecular docking of DBM to Dvl PDZ domain were analyzed by *in silico* experiments. Docked binding mode of peptide DBM (stick representation) to the surface of Dvl PDZ domain (gray) (D). Detailed interactions between the Dvl PDZ domain and DBM (only the last six Cterminal amino acids [QICKFRKC] are shown). Key binding residues from the binding site are highlighted in gray and hydrogen bonds are represented by black as dotted lines (E).

Appendix Figure S4. Surface plasmon resonance analysis for DBM-Dvl PDZ domain interaction.

KY-02327 dilutes of six different concentrations (0, 12.5, 25, 50, 100, and 200 μ M) were flowed over a Dvl PDZ domain immobilized surface plasmon resonance sensor chip. The change of refractive index over the time in the surface of chip was measured and displayed as a graph.

Appendix Figure S5. Quantitative real-time PCR analyses for target-specificity

of KY-02327.

KY-02327 dilutes of three different concentrations (0, 10, and 50 $\mu M)$ were treated

on mouse embryonic fibroblast cells for 12 hours. The mRNA level of pathwayspecific target genes (Appendix Table S2) was measured by quantitative real-time PCR.

Data Information: The data are the mean \pm s.d. (error bars), and significance was assessed using unpaired Student's t-test. [n=3]

 Sham
 OVX + Vehicle

 OVX + KY-02327
 OVX + PTH

H&E staining: Liver

С

В

Appendix Figure S6. The toxicity test of KY-02327.

A-D Vehicle or 20 mg of KY-02327 per kg of animal body weight (mpk) was orally administered or 0.06 mpk of the N-terminal fragment of PTH

(amino acids 1-34) was subcutaneously injected into the Sham-operated (Sham) or ovariectomized (OVX) mice on 5 sequential days per week for 4 weeks [n=4]. During treatment, the weights of each mouse were measured and recorded every week (A). After 4 weeks treatment, mice were scarified and their organs were subjected to histological analyses. Hematoxylin and Eosin staining of liver (B), lung (C), and spleen (D).

Various cells were treated with DMSO or 0.1, 1, or 10 µM KY-02327. After 48 hours, cells were subjected to an MTT assay (OD₅₉₀ reading) to measure cell viability. NSC: neural stem cell, OB: osteoblast, MSC: mesenchymal stem cell. The data are the mean \pm s.d. (error bars). [n=3]

APPENDIX REFERENCES

- Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M, May E (2000) Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. *Oncogene* 19: 649-660
- Cao A, Li H, Zhou Y, Wu M, Liu J (2010) Long chain acyl-CoA synthetase-3 is a molecular target for peroxisome proliferator-activated receptor delta in HepG2 hepatoma cells. J Biol Chem 285: 16664-16674
- Chui PC, Guan H-P, Lehrke M, Lazar MA (2005) PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. *J Clin Invest* 115: 2244-2256
- Donovan JCH, Rothenstein JM, Slingerland JM (2002) Non-malignant and tumor-derived cells differ in their requirement for p27Kip1 in transforming growth factor-beta-mediated G1 arrest. *J Biol Chem* 277: 41686-41692
- Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1. *Mol Cell Biol* 16: 4604-4613
- Germann A, Dihlmann S, Hergenhahn M, Doeberitz MvK, Koesters R (2003) Expression profiling of CC531 colon carcinoma cells reveals similar regulation of beta-catenin target genes by both butyrate and aspirin. *Int J Cancer* 106: 187-197
- Han E-S, Muller FL, Pérez VI, Qi W, Liang H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, Epstein CJ, Roberts LJ, Van Remmen H, Richardson A (2008) The in vivo gene expression signature of oxidative stress. *Physiol Genomics* 34: 112-126
- Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ, Zhu L, Chittenden T (2001) Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse

cell death and survival signals. Proc Natl Acad Sci U S A 98: 11318-11323

- Huang B-W, Ray PD, Iwasaki K, Tsuji Y (2013) Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. *FASEB J* 27: 3763-3774
- Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70: 1469-1480
- Marigo V, Scott MP, Johnson RL, Goodrich LV, Tabin CJ (1996) Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. *Development* 122: 1225-1233
- Marks BD, Smith RW, Braun HA, Goossens TA, Christenson M, Ozers MS, Lebakken CS, Trubetskoy OV (2002) A high throughput screening assay to screen for CYP2E1 metabolism and inhibition using a fluorogenic vivid p450 substrate. *Assay Drug Dev Technol* 1: 73-81
- Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. *Mutat Res* 113: 173-215
- Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. *J Immunol* 178: 2623-2629
- Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853-6866
- Piper DR, Duff SR, Eliason HC, Frazee WJ, Frey EA, Fuerstenau-Sharp M, Jachec C, Marks BD, Pollok BA, Shekhani MS, Thompson DV, Whitney P, Vogel KW, Hess SD (2008)
 Development of the predictor HERG fluorescence polarization assay using a membrane protein enrichment approach. *Assay Drug Dev Technol* 6: 213-223
- Railo A, Pajunen A, Itäranta P, Naillat F, Vuoristo J, Kilpeläinen P, Vainio S (2009) Genomic response to Wnt signalling is highly context-dependent--evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. *Exp Cell*

Res 315: 2690-2704

- Ranganathan P, Agrawal A, Bhushan R, Chavalmane AK, Kalathur RKR, Takahashi T, Kondaiah P (2007) Expression profiling of genes regulated by TGF-beta: differential regulation in normal and tumour cells. *BMC Genomics* 8: 98
- Schwanbeck R, Martini S, Bernoth K, Just U (2011) The Notch signaling pathway: molecular basis of cell context dependency. *Eur J Cell Biol* 90: 572-581