HUMAN ISCHEMIC CARDIOMYOPATHY SHOWS CARDIAC NOS1 TRANSLOCATION AND ITS INCREASED LEVELS ARE RELATED TO LEFT VENTRICULAR PERFORMANCE

Esther Roselló-Lletí¹, Ricardo Carnicer², Estefanía Tarazón¹, Ana Ortega¹, Carolina Gil-Cayuela¹, Francisca Lago³, Jose Ramón González-Juanatey³, Manuel Portolés¹, Miguel Rivera¹

¹Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain; ²Department of Cardiovascular Medicine, University of Oxford, United Kingdom.³Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY METHODS

RNA extraction

Heart samples were homogenized in TRIzol[®] reagent in a TissueLysser LT (Qiagen, UK). All RNA extractions were performed using a PureLinkTM Kit according to the manufacturer's instructions (Ambion Life Technologies, CA, USA). RNA was quantified using a NanoDrop1000 spectrophotometer (Thermo Fisher Scientific, UK), and the purity and integrity of the RNA samples were measured using an Agilent 2100 Bioanalyzer with an RNA 6000 Nano LabChip kit (Agilent Technologies, Spain). All samples showed a 260/280 ratio of >2.0 and an RNA integrity number of \geq 9.

RNAseq

The RNA samples were isolated using a MicroPoly(A) Purist KitTM (Ambion, USA). The total polyA-RNA samples were used to generate whole transcriptome libraries that were sequenced on a SOLiD 5500XL platform as per the manufacturer's recommendations (Life Technologies, CA). The amplified cDNA quality was analyzed using the Bioanalyzer 2100 DNA 1000 kit (Agilent Technologies, Spain), and the cDNA was quantified using the Qubit 2.0 Fluorometer (Invitrogen, UK). Whole transcriptome libraries were used to generate SOLiD templated beads by following the SOLiD Templated Bead Preparation guide. Bead quality was estimated based on WFA (workflow analysis) parameters. The samples were sequenced using the 50625 paired-end protocol, which generated 75 nt + 35 nt (Paired-End) + 5 nt (Barcode) sequences. Quality data were measured using the SETS software parameters (SOLiD Experimental Tracking System).

Computational analysis of RNAseq data

The initial whole transcriptome paired-end reads obtained from the sequencing were mapped against the latest version of the human genome (Version GRchr37/hg19) by using the Life Technologies mapping algorithm (http://www.lifetechnologies.com/). The aligned records were reported in the BAM/SAM format¹. Bad quality reads (Phred score <10) were eliminated using the Picard Tools software².

The isoform and gene predictions were subsequently estimated using the cufflinks method³, and the expression levels were calculated using the HTSeq software⁴. The Edge method was applied to analyze the differential expression between conditions⁵. This method relies on a Poisson model to estimate the RNAseq data variance for differential expression. We selected genes and isoforms that were calculated to exhibit P<0.05 and fold-change >1.5.

NOS activity

NOS activity was measured using radiochemical detection of L-arginine to L-citrulline conversion, as described previously.⁶ Briefly, separation of the products of L-arginine metabolism was obtained by ion exchange chromatography (Jasco Ltd.) and on-line radiochemical scintillation detection (Lablogic Systems Ltd). Recorded data were analyzed using Azur software (Datalys, France). LV was homogenized ice-cold Krebs' HEPES Buffer containing 5 μ mol/L or-NOHA (to inhibit arginase activity). After centrifugation (13,000 rpm for 10 mins at 4oC), the supernatant was then incubated for 30 mins on ice with added NOS cofactors except BH4 (i.e., 10 μ mol/L FAD, 10 μ mol/L FMN, 1 mmol/L NADPH), in the presence or absence of either the non-specific NOS inhibitor, L-NAME (1 mmol/L), or the NOS1-selective inhibitor SMTC (100 nmol/L), followed by 4 hours incubation at 37°C with 3 μ L of labelled ¹⁴C L-arginine (Amersham Biosciences UK Ltd.). Trichloroacetic acid (10%) was then added to de-proteinate the samples, prior to centrifugation. The supernatant was

placed into the auto-sampler cooled to 4oC for chromatographic analysis. Standards of ¹⁴Clabelled Larginine (1 μ mol/L), L-citrulline (0.1 μ mol/L), and L-ornithine (0.2 μ mol/L, all from Amersham Bioscience UK Ltd.) were used to determine elution time. Chromatographic peaks were integrated and expressed as a proportion of total ¹⁴C counts for each sample. Results were expressed as the L-NAME- or SMTC-inhibitable fraction.

SUPPLEMENTARY REFERENCES

- Li, H. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 25, 2078-2079 (2009).
- 2. McKenna, A., et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297-1303 (2010).
- Trapnell, C., et al. Transcript assembly and quantification by RNASeq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol.* 28, 511-515 (2010).
- Anders, S. & Huber, W. Differential expression analysis for sequence count data. *Genome Biol.* 11, R106 (2010).
- Robinson, M.D., McCarthy, D.J., & Smyth, G.K. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*. 26, 139-140 (2010).
- de Bono, J.P., Warrick, N., Bendall, J.K., Channon, K.M. & Alp, N.J. Radiochemical HPLC detection of arginine metabolism: measurement of nitric oxide synthesis and arginase activity in vascular tissue. Nitric Oxide. 16, 1-9 (2007).

SUPPLEMENTARY RESULTS

Supplementary Table S1. Nitric oxide synthases (NOS) and NOS1- related molecules in human ischemic cardiomyopathy.

Gene name	Description	FC±SD	p value
NOS1	nitric oxide synthase 1	2.19±0.93	<i>P</i> <0.01
NOS2	nitric oxide synthase 2	1.27±0.82	NS
NOS3	nitric oxide synthase 3	-1.07±0.44	NS
GCH1	GTP cyclohydrolase 1	-1.53±0.26	<i>P</i> <0.01
XDH	xanthine dehydrogenase	2.42±1.57	<i>P</i> <0.01
RYR1	ryanodine receptor 1	1.12±0.61	NS
RYR2	ryanodine receptor 2	-1.09±0.16	NS
RYR3	ryanodine receptor 3	2.25±0.80	<i>P</i> <0.01
PLN	phospholamban	-1.51±0.14	<i>P</i> <0.05
ATP2A1	ATPase, Ca++ transporting, cardiac muscle,	1.08±0.76	NS
	fast twitch (SERCA1)		
ATP2A2	ATPase, Ca++ transporting, cardiac muscle,	-1.50±0.16	P<0.05
	slow twitch 2 (SERCA2)		
ATP2A3	ATPase, Ca++ transporting, ubiquitous	1.68±0.51	<i>P</i> <0.01
	(SERCA3)		
PRKG1	protein kinase, cGMP-dependent, type I	-1.26±0.15	P<0.05
PRKG2	protein kinase, cGMP-dependent, type II	-1.11±0.98	NS
SRP	sepiapterin reductase	1.50±0.39	<i>P</i> <0.01
NOSIAP	nitric oxide synthase 1 adaptor protein	1.53±0.69	P<0.05
CALM1	calmodulin 1	1.11±0.20	NS

calmodulin 2	1.58±0.32	<i>P</i> <0.01
calmodulin 3	1.48±0.28	<i>P</i> <0.01
caveolin 1	-1.27±0.28	NS
caveolin 3	1.11±0.30	NS
heat shock protein 90kDa alpha (cytosolic), class A member 1	-1.25±0.13	P<0.05
heat shock protein 90kDa alpha (cytosolic), class B member 1	-1.23±0.18	NS
dynein, light chain, LC8-type 1	1.62±0.55	<i>P</i> <0.01
nitric oxide synthase interacting protein	1.43±0.21	<i>P</i> <0.01
phosphofructokinase, muscle	-1.43±0.17	<i>P</i> <0.01
syntrophin, alpha 1	-1.07±0.12	NS
dystrophin	1.08±0.19	NS
	calmodulin 2 calmodulin 3 caveolin 1 caveolin 3 heat shock protein 90kDa alpha (cytosolic), class A member 1 heat shock protein 90kDa alpha (cytosolic), class B member 1 dynein, light chain, LC8-type 1 nitric oxide synthase interacting protein phosphofructokinase, muscle syntrophin, alpha 1 dystrophin	calmodulin 2 1.58±0.32 calmodulin 3 1.48±0.28 caveolin 1 -1.27±0.28 caveolin 3 1.11±0.30 heat shock protein 90kDa alpha (cytosolic), class A member 1 -1.25±0.13 heat shock protein 90kDa alpha (cytosolic), class B member 1 -1.23±0.18 dynein, light chain, LC8-type 1 1.62±0.55 nitric oxide synthase interacting protein 1.43±0.21 phosphofructokinase, muscle -1.43±0.17 gyntrophin, alpha 1 -1.07±0.12 dystrophin 1.08±0.19

Data are showed as the fold change (FC) value±standard deviation (SD)