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Supplemental	Information	
	
Supplemental	Experimental	Procedures	
	
Bayesian	reversal	learning	model	
	
Structure	of	the	learning	task	
	
On	each	trial,	participants	selected	one	of	two	stimuli	{S1,	S2}	and	observed	one	
of	two	outcomes	{O1,	O2}.	Since	participants	were	informed	that	each	stimulus	
was	associated	with	exactly	one	outcome	on	each	trial	and	vice	versa,	this	single	
observation	gave	full	information	about	the	stimulus-outcome	contingencies	on	
the	current	trial:	
	
𝑆! →  𝑂! ⇒ 𝑆! →  𝑂! 	

Eq.	1	
	
Hence	estimating	the	contingency	between	once	S-O	pair	𝑝 𝑆! →  𝑂! 	is	
equivalent	to	estimating	the	full	contingency	structure.	Let	the	true	probability	
that	S1	leads	to	O1	on	trial	t,	𝑝! 𝑆! →  𝑂! ,	be	denoted	by	qt.	Then:	
	
𝑝! 𝑆! → 𝑂! = 𝑞!	
𝑝! 𝑆! → 𝑂! = 𝑞!	
𝑝! 𝑆! → 𝑂! = 1− 𝑞!	
 𝑝! 𝑆! → 𝑂! = 1− 𝑞!	

Eq.	2	
	
The	true	value	of	𝑞!	was	in	fact	0.75	in	the	first	25	trials	and	either	0.8	or	0.2	in	
the	next	50	trials.	These	values	were	not	known	by	participants.	Participants	
were	instructed	that	the	contingencies	could	reverse	but	were	not	told	when.	In	
reality	when	the	contingencies	did	reverse	the	first	time,	their	new	true	values	
changed	slightly	from	0.75/0.25	to	0.8/0.2.	These	values	were	chosen	simply	
because	they	proved	to	be	effective	in	a	previous	study1.		
	
Let	the	presence	of	a	reversal	on	trial	t	be	denoted	by	Jt	such	that		
	
𝐽! =  10 if there is a reversal on trial t

otherwise                                     	
Eq.	3	

then	
	
𝑞! = 𝑞!!! ∙ 𝛿 𝐽! , 0 + (1− 𝑞!!!) ∙ 𝛿(𝐽! , 1)	

Eq.	4	
	

where	𝛿	denotes	the	Kroenecker	delta	function.	
	
Participants	 were	 not	 instructed	 as	 to	 the	 probability	 of	 reversal;	 in	 fact	 the	
contingencies	reversed	once	after	25	trials.		
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After	50	trials	the	stimuli	{S1,	S2}	were	replaced	with	a	new	pair	{S3,	S4}	at	which	
point	 the	probabilities	𝑝! 𝑆! →  𝑂! 	had	 to	be	 estimated	 afresh.	The	motivation	
for	 including	 new	 stimuli	 at	 trial	 51	 was	 to	 test	 whether	 there	 would	 be	 any	
differences	between	the	neural	CSS	effects	when	subjects	reversed	a	learned	S-O	
association	 and	when	 they	 learn	 a	new	S-O	association.	No	 such	differences	 in	
neural	 effects	 were	 observed,	 even	 at	 the	 reduced	 threshold	 of	 p<0.05	
uncorrected,	 so	 we	 treated	 these	 phases	 identically	 in	 our	 subsequent	 neural	
analyses.	
	
Learning	model	
	
We	constructed	a	normative	Bayesian	learning	model	that	estimated	the	
contingency	𝑞!	on	each	trial	based	on	the	history	of	observed	outcomes,	selected	
stimuli,	and	observed	outcomes	on	trials	up	to	and	including	trial	t,	denoted	by	
y1:t.		
	
On	each	trial	t,	the	posterior	probability	for	each	value	of	𝑞!	was	given	using	
Bayes’	rule:	
	
𝑝 𝑞! 𝒚𝟏:𝒕 ∝  𝑝 𝒚𝒕 𝑞! ∙ 𝑝(𝑞!|𝒚𝟏:𝒕!𝟏, 𝑣)	

Eq.	5	
	

The	likelihood	𝑝 𝒚𝒕 𝑞! 	is	simply	𝑞! .		
	
The	prior 𝑝(𝑞!|𝒚𝟏:𝒕!𝟏)	accounts	for	the	possibility	of	a	reversal	J.	The	probability	
of	a	reversal	v	=	p(Jt=1)	was	modeled	as	fixed	across	trials	but	of	unknown	value.	
Hence	the	prior	𝑝(𝑞!|𝒚𝟏:𝒕!𝟏)	on	trial	t	was	obtained	from	the	posterior	on	the	
previous	trial	by	applying	a	transition	function:	
	

𝑝 𝑞! 𝑦!:!!! =  𝑝 𝑞!!! 𝑦!:!!! ∙ 1− 𝑣 + (1− 𝑝 𝑞! 𝑦!:!!! ) ∙ 𝑣  𝑑𝑣	

Eq.	6	
	

When	the	stimuli	{S1,	S2}	were	replaced	with	a	new	pair	{S3,	S4}	on	trial	51,	the	
learning	model	assumed	that	v	was	unchanged.	Furthermore	the	model	assumed	
that	the	stimulus-outcome	contingencies	were	transferred	to	the	new	stimuli,	
such	that	either		
	 	

𝑝!" 𝑆! → 𝑂! = 𝑝!" 𝑆! → 𝑂! 	
or		

𝑝!" 𝑆! → 𝑂! = 𝑝!" 𝑆! → 𝑂! 	
Eq.	7	

	
This	decision	was	taken	because	it	is	a	natural	choice	given	the	task	instructions	
and	because	it	slightly	improved	behavioral	fits	when	compared	with	a	variant	of	
this	reversal	model	that	learned	the	stimulus-outcome	contingencies	anew.	Let	
the	new	contingency	𝑝!" 𝑆! → 𝑂! 	be	denoted	by	q*.	Then	the	prior	on	trial	50,	
the	first	trial	with	the	new	stimuli	was	given	by	
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𝑝 𝑞∗!" 𝒚𝟏:𝟓𝟎 =  !
!
𝑝 𝑞!" 𝒚𝟏:𝟓𝟎 +  !

!
𝑝(1− 𝑞!"|𝒚𝟏:𝟓𝟎)	

Eq.	8	
	
For	 simplicity,	 let	 r	 denote	 the	mean	 of	 the	 belief	 distribution	 over	 transition	
probabilities,	 given	 the	 past	 choice	 outcomes	 observed	 up	 to	 trial	 t:	
mean[ 𝑝(𝑞!|𝒚𝟏:𝒕!𝟏) ].	 We	 used	 these	 normative	 estimates	 of	 transition	
probabilities	 to	 generate	 estimates	 of	 each	 participant’s	 subjective	 expected	
value	for	a	given	stimulus	1	(S1):	
	

𝑔!! = 𝑟!!→𝑂1𝑚!!𝛼 + 𝑟!!→!!𝑚!!
1
𝛼	

Eq.	9	
	
where	𝑔!!	denotes	 the	 subjective	 expected	 value	 for	 stimulus	 1,	𝑟!!→!! denotes	
the	belief	in	the	transition	probability	from	stimulus	1	to	outcome	identity	1,	and		
𝑚!! 	denotes	 the	 reward	 payout	 on	 a	 particular	 gift	 card	 outcome.	 	 In	 our	
formulation,	𝛼	is	a	subject-specific	free	parameter	that	allows	for	the	possibility	
that	 participants	 weight	 reward	 payouts	 for	 one	 gift	 card	 more	 or	 less	 than	
reward	payouts	on	the	alternative	gift	card,	indicative	of	differential	preferences	
between	gift	 cards.	 It	 follows	 that	 the	subject	expected	value	of	 the	alternative	
stimulus	2	is	given	by:	
	
𝑔!! = 𝑟!!→!!𝑚!!𝛼 + 𝑟!!→!!𝑚!!

!
!
.	

Eq.	10	
	

We	assumed	participants	then	selected	between	stimuli	based	on	the	following	
softmax	distribution:	
	
	

𝑃 𝑠 =
exp (𝜏𝑔!)
exp (𝜏𝑔!!)

!!
!!!!

	

Eq.	11	
	

where	𝜏	is	a	second	subject-specific	free	parameter	that	reflects	the	sensitivity	of	
stimulus	choices	to	expected	stimulus	values	and	Ns=2.		
	
The	experience-weighted	Bayesian	reversal	 learning	model	was	identical	to	the	
above,	 except	 it	 contained	 an	 additional	 free	 parameter	 η	 that	 differentially	
weighted	outcomes	depending	on	whether	they	were	experienced	or	inferred.		
	
We	fitted	𝛼,	𝜏,	and	where	applicable	η	to	each	individual	subject’s	choices	using	
standard	 non-linear	 minimization	 procedures	 implemented	 in	 MATLAB	 14a	
(Mathworks).	Based	on	these	estimates,	we	inferred	each	subject’s	preferred	gift	
card	outcome	𝑂!	on	each	choice	trial	as	the	outcome	with	the	greater	magnitude,	
after	weighting	by	𝛼: 	
	
𝑂! = max (𝑚!!𝛼,𝑚!!

!
!
).	
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Eq.	12	
	
We	next	tested	to	what	extent	estimates	of	association	strength,	updates	to	those	
associations,	derived	from	the	Bayesian	reversal	learning	model,	and	the	reward	
payouts	 obtained,	 captured	 fluctuations	 in	 participants’	 actual	 choices.	 In	
particular,	we	computed	a	linear	regression	model,	predicting	stimulus	1	choice	
on	trial	t	on	the	basis	of	three	terms:		
	
𝑐 = 𝛽!𝑟!!→!!(!),!!! + 𝛽!𝜃!!!→! + 𝛽!𝑚!!!!→!𝑖! ,		 			 	 	 GLM	1	
	
where	𝑟!!→!! ! ,!!!  is	 the	previous	 belief	 that	 selecting	 stimulus	 1	would	 lead	 to	
the	 currently	 preferred	 outcome,	 before	 seeing	 the	 latest	 outcome,	𝜃!!!→! =
𝑟!!→!! ! ,! − 𝑟!!→!!(!),!!!, or	 the	 update	 to	 this	 association	 from	 the	 latest	
outcome,	𝑚!!!!→!	denotes	 the	 latest	 reward	 payout	 obtained	 (specifically	 the	
amount	 of	 points	 obtained	 on	 the	 latest	 choice	 outcome)	 and	𝑖!	is	 an	 indicator	
term	which	determines	the	association	that	the	reward	payout	‘stamps	in’:		
	
𝑖! = 1		 if	selecting	stimulus	1	on	trial	t-1	led	to	the	currently	preferred	outcome	
𝑂!	on	the	last	outcome	or	stimulus	2	led	to	the	currently	non-preferred	outcome		
𝑂!"	on	the	last	outcome	
𝑖! = −1 otherwise.		
	 To	define	fMRI	regressors	to	capture	identity	updating	for	fMRI	analyses,	
we	 defined	 the	 stimulus-outcome	 updates	 as	 the	 Kullback-Liebler	 divergence	
between	posterior	and	prior	distributions	over	possible	transition	probabilities:		
	

𝐷!" 𝑡 = ln
𝑝 𝑞! 𝑦!:!
𝑝 𝑞! 𝑦!:!!!

𝑝 𝑞! 𝑦!:!      𝑑𝑞	

Eq.	13	
	
MATLAB	code	for	models	is	available	on	request.	
	
	
FMRI	Analyses	
	
FMRI	data	acquisition,	preprocessing,	and	analysis	
	
FMRI	data	were	acquired	on	a	3T	Siemens	TRIO	scanner	with	a	voxel	resolution	
of	3x3x3	mm3,	TR=3s,	TE=30ms,	Flip	angle=87o.	 	The	slice	angle	was	set	to	30o	
and	 a	 local	 z-shim	 was	 applied	 around	 the	 orbitofrontal	 cortex	 to	 minimize	
signal	dropout	in	this	region(Deichmann	et	al.,	2003),	which	has	previously	been	
implicated	in	other	aspects	of	 learning	and	decision	making.	The	mean	number	
of	 volumes	 acquired	 was	 ~1034,	 giving	 a	 mean	 total	 experiment	 time	 of	
approximately	~52	minutes.		
	 We	 acquired	 Field	 Maps	 using	 a	 dual	 echo	 2D	 gradient	 echo	 sequence	
with	 echos	 at	 5.19	 and	 7.65	 ms,	 and	 repetition	 time	 of	 444ms.	 	 Data	 were	
acquired	 on	 a	 64x64x40	 grid,	 with	 a	 voxel	 resolution	 of	 3mm	 isotropic.	 	 T1-
weighted	 structural	 images	 were	 acquired	 for	 subject	 alignment	 using	 an	
MPRAGE	sequence	with	the	following	parameters:	Voxel	resolution	1x1x1	mm3	
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on	 a	 176x192x192	 grid,	 Echo	 time(TE)=	4.53	ms,	 Inversion	 time(TI)=	900	ms,	
Repetition	time	(TR)=	2200	ms.	
	 Preprocessing	and	analysis	of	fMRI	data	was	performed	using	tools	from	
FEAT	(fMRI	Expert	Analysis	Tool)	Version	6.00,	part	of	FSL	 (FMRIB's	Software	
Library,	http://www.fmrib.ox.ac.uk/fsl)52.	Region-of-interest	time	series	analysis	
was	performed	using	custom-written	scripts	in	MATLAB	14a	(Mathworks).	Data	
were	 preprocessed	 using	 the	 default	 options	 in	 FEAT:	 motion	 correction	 was	
applied	 using	 rigid	 body	 registration	 to	 the	 central	 volume(Jenkinson	 et	 al.,	
2002);	 corrected	 for	 geometric	 distortions	 using	 the	 field	 maps	 and	 an	 n-
dimensional	 phase-unwrapping	 algorithm(Jenkinson,	 2003);	 Gaussian	 spatial	
smoothing	was	 applied	with	 a	 full	width	 half	maximum	of	 5mm;	 brain	matter	
was	 segmented	 from	non-brain	using	a	mesh	deformation	approach;	high	pass	
temporal	 filtering	 was	 applied	 using	 a	 Gaussian-weighted	 running	 lines	 filter,	
with	a	3dB	cutoff	of	100s;	and	slice	timing	correction	for	ascending	interleaved	
sequence	 was	 applied.	 EPI	 images	 were	 registered	 with	 the	 high-resolution	
structural	 images	 and	 normalized	 into	 standard	 (MNI)	 space	 using	 affine	
registration	 using	 FLIRT	 (FMRIB's	 Linear	 Image	 Registration	 Tool)(Jenkinson	
and	Smith,	2001).		
	
Region	of	interest	analysis	
Time	series	for	ROI	plotting	and	analyses	were	determined	by	generating	a	3mm	

radius	sphere	in	standard	space	centered	on	coordinates	from	previous	studies:	
ref	(Klein-Flugge	et	al.,	2013)	for	lOFC	and	ref	(Klein-Flugge	et	al.,	2011)	for	VM.	
We	then	applied	 the	 inverse	of	each	 individual's	 registration,	calculated	during	
intersubject	registration,	to	project	this	mask	from	standard	space	to	the	3-mm3	
isotropic	 space	 in	which	 EPI	 data	were	 acquired	 and	 extracted	 the	mean	 time	
series	 within	 this	 region	 of	 interest	 from	 the	 pre-processed	 EPI	 data	 for	 each	
subject.		
	
To	 plot	 effects	 of	 individual	 regressors	 through	 time,	 the	 timeseries	 was	
upsampled,	 then	 time-locked	 to	 feedback	 onset	 (Figure	 4)	 of	 each	 trial.	 This	
creates	a	data	matrix	with	dimensions	nTrials*nTime	points	within	a	trial.	Each	
time	 point	 was	 regressed	 against	 explanatory	 variables	 of	 interest	 for	 each	
subject.	 The	 mean	 ±	 standard	 error	 (across	 subjects)	 of	 parameter	 estimates	
from	this	regression	is	plotted.	A	full	description	of	this	approach	is	given	in	ref	
(Behrens	et	al.,	2008).		
	
To	 obviate	 the	 potential	 for	 selection	 bias	 when	 conducting	 statistical	 tests	
reported	 in	 the	 section	 “lOFC	 and	 VM	 feedback	 responses	 explain	 single-trial	
change	to	hippocampal	CSS”	and	Figure	5,	we	adopted	a	leave-one-out	approach	
to	ROI	construction,	 in	which	 the	 lOFC	and	hippocampal	masks	used	 to	extract	
each	 subject's	 data	 were	 based	 upon	 coordinates	 from	 a	 group	 analysis	
containing	all	the	remaining	(n	−	1)	subjects,	and	then	tested	in	the	independent	
left-out	subject.	
	
	
Supplemental	Data	
	
Behavioral	Model	Comparison	



	 6	

	
As	stated	in	the	main	text,	the	purpose	of	the	Bayesian	reversal	 learning	model	
was	 to	 generate	 trial-by-trial	 predictions	 to	 relate	 to	 neural	 responses,	 rather	
than	to	optimally	capture	behavior	and	as	such,	we	did	not	compare	an	extensive	
range	 of	 models.	 However,	 to	 test	 whether	 the	 model	 outperformed	 an	
alternative,	 well-established	 Bayesian	 model	 in	 the	 context	 of	 our	 task,	 we	
compared	 performance	 with	 a	 previously	 described	 hierarchical	 Bayesian	
learning	model	 (“Volatility	Model”,	 see	 ref1	 for	 a	 detailed	 description).	 Briefly,	
the	 volatility	 model	 contains	 a	 belief	 volatility	 term	 that	 controls	 the	 rate	 of	
change	 of	 the	 outcome	 probability,	 and	 an	 additional	 hyperparameter	 that	
represents	 the	distrust	 in	 the	 constancy	of	 the	 volatility.	 The	model	 effectively	
assumes	that	unlikely	outcomes	lead	to	Gaussian-governed	drifts	in	the	outcome	
probability	estimate,	controlled	by	 the	estimate	of	 the	environmental	volatility,	
rather	 than	 to	potential	 reversals.	As	shown	 in	 table	S1,	 the	Bayesian	reversal-
learning	 model	 we	 constructed	 for	 the	 current	 task	 more	 accurately	 captures	
participants’	choices	in	our	task.		
	
Reward	prediction	error	analyses	
	
We	computed	a	separate	GLM	in	a	whole-brain	analysis	in	which	we	modulated	
feedback	 events	 by	 reward	 prediction	 errors,	 defined	 as	 the	 reward	 amount	
obtained	minus	the	subjective	expected	value:		
	
𝛿 = 𝑚! − 𝑔!!! ,	
	
where	 	𝑔!!!  is	 the	 subjective	 expected	 value	 for	 the	 chosen	 stimulus.	 This	
analysis	revealed	several	clusters,	including	in	ventral	striatum	(peaks	in	nucleus	
accumbens	and	subgenual	cingulate),	left	hippocampus,	and	sensorimotor	cortex	
(Figure	S5).		

In	 addition,	 we	 conducted	 an	 alternative	 analysis	 of	 feedback-locked	
activity	in	VTA	ROIs	in	terms	of	reward	prediction	errors	(rPEs).	We	found	that	
VTA	activity	was	consistent	with	an	unsigned	rPE,	generated	using	estimates	of	
the	transition	probabilities	and	potential	reward	payouts	(t(21)=2.81,	p=0.005).	
These	 effects	 thus	 depended	 on	 the	 preferred	 outcome:	 VTA	 signaled	 positive	
rPEs	for	preferred	outcomes	and	negative	rPEs	for	unpreferred	ones	(Figure	S4).	
Moreover,	those	subjects	 in	whom	the	reward	payout	(but	not	 identity	update)	
more	 strongly	 drove	 learning	 behaviorally	 showed	 stronger	 unsigned	 reward	
prediction	error	effects	 (partial	 correlation	ρ	 =	0.50,	p	=	0.025;	Figure	S4).	We	
note	 that	 this	 formulation	 is	 closely	 related,	 but	 not	 identical,	 to	 the	 model	
(GLM3)	 presented	 in	 the	main	 text	 that	 uses	 a	 combination	 of	DKL	and	 reward	
payout	to	explain	fluctuations	in	VTA	responses.	We	elect	to	present	the	results	
of	 GLM3	 in	 the	 main	 text	 because	 it	 is	 consistent	 with	 the	 model	 used	 to	
characterize	 behavior	 and	 also	 neural	 effects	 of	 association	 strength	 and	
updating	of	stimulus-outcome	associations.			
	
	
	
COPE	 Region	 Voxels	 p-value	 z-stat	

(max)	
X	
(max)	

Y	
(max)	

Z	
(max)	
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RS	Block	GLM:	
Difference	
between	LC	
and	HC	items,	
modulated	by	
difference	in	
transition	
probability	
estimates:	(LC	
–	HC)*(rHC	–	rLC)	

Posterior	
Cingulate	Cortex	

1046	 9.18E-
06	

3.68	 14	 -56	 20	

Middle	temporal	
gyrus/	
Hippocampus/	
Amygdala/	
Perirhinal	cortex	

739	 0.00027	 4.04	 58	 -6	 -22	

Temporal	parietal	
junction	area	

595	 0.00154	 4.4	 -42	 -54	 22	

Inferior	temporal	
gyrus	

490	 0.00603	 3.72	 44	 -56	 -10	

Hippocampus/	
Para-
hippocampal	
gyrus	

433	 0.0131	 3.48	 -34	 -14	 -20	

Choice	
Feedback*	
Identity	
update	
(signed	Dkl)	

PCC	 					3675	 3.71E-
16	

4.37	 -4	 -52	 6	

Lateral	occipital	
cortex	(LOC,	
superior)	

1689	 4.61E-
09	

4.3	 -30	 -86	 28 

Insula/inferior	
temporal	gyrus	
(ITG,	posterior)	

544	 0.00159	 4.13	 -38	 -24	 2 

lOFC/vlPFC	 499	 0.00298	 3.85	 -36	 30	 -16 
ACC	(cingulate	
gyrus)	

457	 0.00547	 4.04	 0	 20	 26 

Choice	
Feedback	*	
Identity	
update	
(unsigned	Dkl)	

Dorsolateral	
frontal	cortex		

904	 1.84E-
05	

4.73	 52	 10	 34	

Intraparietal	Area	 332	 0.0388	 3.94	 42	 -44	 44 

Choice	
Feedback	*	
Reward	
payout	

Intraparietal	Area	 1414	 1.01E-
09	

4.45	 -46	 -50	 46 

Supramarginal	
gyrus	

					1076	 5.96E-
08	

						
4.31	

									
40	

								-
46	

							26	

Dorsolateral	
frontal	cortex	
(superior	frontal	
gyrus)	

1046	 1.19E-
07	

4.01	 -20	 28	 50 

Sensorimotor	
cortex	
(postcentral	
gyrus)	

518	 0.00030
6	

3.59	 -66	 -10	 16 

Lateral	occipital	
cortex	(LOC,	
superior)	

399	 0.00253	 3.84	 -36	 -68	 28 

Sensorimotor	
cortex	
(postcentral	
gyrus)	

321	 0.0113	 3.76	 50	 -20	 48 

Intraparietal	Area	 294	 0.0195	 3.54	 46	 -42	 58 
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Hippocampus	 261	 0.0385	 4.28	 -32	 -26	 -12 
Insular	cortex	
(posterior)/	
Putamen	

255	 0.0437	 3.78	 -30	 -22	 10 

Table	 S1,	 related	 to	 Figure	 3	 and	 Figure	 4.	 Full	 report	 of	 contrasts	 of	
interest.	 Details	 of	 activations	 for	 each	 contrast	 reported	 in	 the	 Results.	 All	
reported	activations	survive	a	cluster-forming	threshold	across	the	whole	brain	
of	 Z>2.3,	 and	 a	 family-wise	 error	 rate	 of	 p=0.05.	 Coordinates	 refer	 to	
standardized	Montreal	Neurological	Institute	(MNI)	152	space.		
	
	
	
	
	
	
	 CSS	Peaks	in	Medial	Temporal	Lobe		

	 Hippocampus	 Amygdala	 Perirhinal	
Cortex	

Choice	
Feedback*	
Identity	
update	
(signed	
Dkl)	

lOFC	 *t(21)=2.5,	
p=0.01	

*t(21)=1.85,	
p=0.04	

t(21)=1.51,	
p=0.07	

ACC	 t(21)=1.26,	
p=0.11	

t(21)=-0.55,	
p=0.29	

t(21)=0.81,	
p=0.21	

PCC	 *t(21)=2.04,	
p=0.03	

t(21)=0.27,	
p=0.39	

t(21)=0.56,	
p=0.29	

ITG	 t(21)=0.78,	
p=0.22	

t(21)=-0.20,	
p=0.42	

t(21)=1.18,	
p=0.13	

LOC	 t(21)=-0.46,	
p=0.33	

t(21)=-1.25,	
p=0.11	

t(21)=0.90,	
p=0.19	

Table	 S2,	 related	 to	Figure	5.	For	completeness,	we	performed	post-hoc	 tests	
using	 ROIs	 from	 each	 region	 showing	 signed	 identity	 update	 effects	 at	 choice	
feedback	(rows)	as	the	predictor	and	the	single-trial	change	to	CSS	in	each	peak	
within	 the	 medial	 temporal	 lobe	 as	 the	 dependent	 variable	 (columns)	 within	
separate	general	linear	models.	Choice	feedback-locked	responses	from	each	CSS	
ROI,	 model-derived	 stimulus-outcome	 updates,	 and	 reward	 payouts	 were	
included	 in	 the	 general	 linear	 model	 as	 covariates	 of	 no	 interest.	 T-statistics	
result	 from	 one-sample	 t-tests;	 *	 denotes	 effects	 at	 p<0.05	 uncorrected	 for	
multiple	comparisons.		
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Figure	S1,	related	to	Figure	2.	Reversal	model	joint	distributions.	Heatmaps	
depict	 the	 probability	 mass	 of	 each	 value	 of	 the	 joint	 probability	 distribution	
over	 reversal	 probabilities	 (abscissa)	 and	 stimulus-outcome	 transition	
probabilities	 (ordinate)	 for	 the	 first	 40	 choice	 trials.	 To	 produce	 the	 plots	 in	
figure	2,	we	marginalized	over	reversal	probabilities.		
	
	

	
Figure	 S2,	 related	 to	 Figure	 2.	 Relationship	 between	 transition	
probabilities	 and	 stimulus	 choices.	 To	 illustrate	 the	 relationship	 between	
transition	 probability	 estimates	 and	 subject	 choices,	 the	 mean	 probability	
(bright	green)	+/-	group	SEM	(light	green	shadow)	of	selecting	the	stimulus	with	
the	 maximal	 subjective	 expected	 value	 (𝑔!"#$ )	 is	 overlaid	 onto	 the	 model	
estimates	 also	 shown	 in	 Figure	 2A.	 Choice	 probability	 is	 computed	 from	 a	
running	average	with	a	centered	 five-choice	window.	For	 the	middle	25	choice	
trials	(trials	26-50),	1	–	p(choice=𝑔!"#$)	is	plotted	to	facilitate	comparison	with	
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the	 mean	 S1-O1	 transition	 probability	 estimate	 (magenta).	 The	 true	 data	
generating	 S1-O1	 transition	 probability	 is	 shown	 in	 white.	 Potential	 reward	
payouts,	which	are	combined	with	transition	probabilities	to	determine	subject	
choices,	 are	 not	 shown	 on	 this	 plot.	 These	 mainly	 account	 for	 the	 difference	
between	 green	 and	 magenta	 curves.	 Conventions	 are	 otherwise	 the	 same	 as	
Figure	2A.		
	

	
Figure	S3,	related	to	Figure	4.	Whole-brain	effects	of	different	contrasts	at	
choice	 feedback.	 (A)	 Left:	 Significant	 effects	 (cluster	 corrected)	 in	 a	
frontoparietal	 network	 related	 to	 the	 effect	 of	 DKL	 (unsigned)	 at	 choice	
feedback.	Middle,	right:	Activations	in	contralateral	IPS	and	DLPFC	and	pre-SMA	
are	displayed	at	 a	 reduced	 threshold	of	 Z>2.33	p<0.01	uncorrected	 for	display	
purposes.	 (B)	 Significant	 effect	 (cluster	 corrected)	 in	 ACC	 at	 choice	 feedback	
relating	 to	 the	 effect	 of	DKL	(signed),	 localized	 ventrally	 to	 the	 pre-SMA	 region	
shown	in	(A).	(C)	Significant	effects	(cluster	corrected)	relating	to	signed	reward	
payout	at	choice	feedback	in	posterior	cingulate	cortex,	hippocampus,	putamen,	
and	 sensorimotor	 cortex.	 (D)	 Z-statistic	 map	 relating	 to	 the	 contrast	 of	 main	
effects	 between	 non-preferred	 and	 preferred	 outcomes	 (Onp	 -	 Op)	 at	 feedback.	
Hot	 and	 cool	 colors	 denote	 positive	 and	 negative	 effects,	 respectively,	
thresholded	 at	 Z>3.1,	 p<0.001	 uncorrected	 for	 display	 purposes.	 Hot	 colors	
indicate	 greater	 activity	 for	 non-preferred	 (and	 hence	 less	 expected)	 than	
preferred	 (and	hence	more	 expected)	 outcomes,	while	 cool	 colors	 indicate	 the	
reverse.	 (E)	 Z-statistic	 map	 relating	 to	 the	 effect	 of	 LC	 –	 HC	main	 effects	 (i.e.	
categorical	 difference	 between	 low	 and	 high	 contingent	 transitions,	 not	
modulated	by	trial-by-trial	association	strength),	showing	differential	activation	
in	 left	 lOFC	 and	 hippocampus/parahippocampal	 gyrus,	 thresholded	 at	 Z>2.33,	
p<0.01	uncorrected	for	multiple	comparisons.		
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Figure	 S4,	 related	 to	 Figure	 4.	 VTA	 effects	 of	 reward	 prediction	 errors.	
Upper	left:	ROIs	in	VTA.	Bottom	left:	Timecourse	of	unsigned	reward	prediction	
error	 effect	 in	 left	 VTA	 ROI.	 Upper	 right:	 Timecourse	 of	 positive	 (orange)	 and	
negative	 (magenta)	 reward	 prediction	 error	 effects,	 defined	 with	 respect	 to	
preferred	 and	 unpreferred	 options.	 Bottom	 right:	 Scatterplot	 depicts	
relationship	between	behavioral	effect	of	reward	payout	depicted	in	Fig	2B	and	
neural	 effect	 of	 unsigned	 reward	prediction	 error	 in	 left	 VTA.	 Conventions	 are	
the	same	as	in	Figure	2	in	the	main	text.		
	
	

	
Figure	 S5,	 related	 to	 Figure	 4.	 Whole-brain	 effects	 of	 reward	 prediction	
errors.	Whole	 brain	 cluster-corrected	 Z-statistic	 map	 relating	 to	 the	 effect	 of	
reward	prediction	error	at	choice	feedback.	Activations	shown	survive	a	cluster-
forming	threshold	across	the	whole	brain	of	Z>2.3,	and	a	family-wise	error	rate	
of	p=0.05.		
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