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1 Linear viscoelasticity

Using a macroscopic shear rheometer, we checked whether all samples behaved
as linearly viscoelastic materials in the strain range we probed. As we gradually
increased shear strain, both G′ and G′′ remained constant up to ∼ 20% strain
for all frequencies probed (see the results for f = 1Hz in figure S1).

The cantilever on our probe behaved mechanically like a spring through
the Euler-Bernoulli equation [1] at the frequencies we probed (as confirmed by
oscillating the cantilever without material load). We could thus assume a spring
constant k relating static load P and cantilever displacement d through P =
k · d. The bending stiffness k was calibrated using a high-precision scale (Cubis
microbalance, Sartorius AG) and the radius of the bead was measured using
an optical microscope (BX60, Olympus). For every sample, we first performed
indentations to determine the linear elastic deformation regime. To that end we
translated the probe with the piezoelectric actuator resulting in an indentation
depth h and cantilever deflection dcantilever upon contact with the sample:

dpiezo = h+ dcantilever (1)

Linear piezoelectric movement leads to non-linear load P and indentation
depth h, since these quantities are related by Hertzian theory [2, 3] through:
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where R denotes the radius of the spherical indenter, G the material shear
modulus and ν the Poisson ratio. We used these results under linear elastic
assumptions to determine which load P and indentation depth h were within
the linear (visco-)elastic limit for our dynamic load-sweep. Typically, the sample
was indented to a depth of 3-8 µm, with loads ranging over 3 orders of magnitude
from 0.1-100 µN depending on material stiffness. For samples with different
stiffnesses, appropriate probes with k = 0.5-40 N/m were used to maximize
sensitivity to cantilever deflection and indentation. To quantify the stiffness
gradient samples we used cantilevers with a bending stiffness k = 6-8 N/m.

2 Feedback error signal

As the dynamic sweep was performed, the actual cantilever deflection from phase
unwrapping was determined at every time point. The subsequent mismatch
between the load (given by cantilever deflection) and the sweep load produced
an error signal:

e(t) = Psweep(t)− k · dcantilever(t) (3)

The error signal controlled a direct feedback loop with action onto the piezo-
electric extension. Continuous adjustment over time made sure the actual load
onto the sample followed the predefined load sweep. Finally, our readout was the
indentation depth as given by h(t) = dpiezo−dcantilever dependent on the piezo-
electric adjustment and the cantilever deflection. The piezoelectric displacement
was monitored through the strain gauge while the cantilever displacement was
measured by live demodulation, as explained in the main text.
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For the mapping of a surface with a large variation in stiffness, load-controlled
indentations may cause the indentation depth to become too large for the the-
oretical limit of small deformations relative to probe size (i.e. h << R). To
ensure small deformations and probing at similar depth when measuring samples
with a heterogeneous stiffness, we controlled the feedback onto the piezoelectric
actuator relative to an indentation depth sweep. The indentation depth is given
by h = dpiezo − dcantilever. Note here that especially for highly heterogeneous
samples the cantilever deflection can be very large relative to the piezoelectric
movement leading to a small indentation depth (over 2 orders of magnitude from
typically 200 nm to 20 µm, see figure 3 in the main text). To correct for that
more piezoelectric movement is needed to obtain the same indentation depth as
in a softer location. The error signal for indentation-controlled movement thus
becomes:

e(t) = hsweep(t)− h(t) = hsweep(t)− (dpiezo(t)− dcantilever(t)) (4)

Further analysis to determine the storage and loss modulus was fully analo-
gous to a load-controlled indentation sweep and is described in the main text.

Figure S1: The silicone polymers under investigation behave as linear viscoelas-
tic materials over the strain range probed by macroscale rheometry
and indentation. Up to large shear strain (γ > 20%), the LS- (A),
MS- (B) and HS samples (C) show no change in G′ and G′′. Data
are shown for f = 1 Hz, but linear viscoelasticity still holds for the
full frequency range f = 0.01 − 10 Hz.
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Figure S2: Precision of the cantilever deflection measurement. A Gaussian fit
(red line) to a distribution of zero cantilever deflections gives the
precision of deflection measurement σcantilever = 5 nm. Cantilever
deflection precision relates to the precision of force measurement
dependent on cantilever stiffness k through σP = k · σcantilever.

Figure S3: A Hertzian fit (equation 2 in supporting information) is made to the
indentation approach curve to determine the exact point of contact.
Over the full indentation approach (blue) a Hertzian fit (red line)
works well since we are in the linear elastic regime.
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Figure S4: Sinusoidal fits to oscillations on a MS sample, corresponding to fig-
ure 4C in the main text. At f= (A) 0.01 Hz, (B) 0.1 Hz, (C) 1 Hz
and (D) 10 Hz, load (red) and indentation (blue) are depicted. Note
that from A-D with increasing frequency; (1) the amplitude of the
indentation response decreases, indicating an increase in stiffness
and (2) the phase shift between load and indentation increases indi-
cating a more viscous response. These characteristics are captured
by (1) the absolute increase of both G′ and G′′ and (2) the relative
increase of G′′ relative to G′, respectively.
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Figure S5: Precision of G′ and G′′ as probed at f = 1 Hz. Storage and loss mod-
uli G′ and G′′ from repeated indentations on the same spot on (A-B)
a LS sample, (C-D) a MS sample and (E-F) a HS sample. Distribu-
tions of results are fitted with a Gaussian distribution (red line) and
the mean and standard deviation are depicted. The precision of the
measurement of G′ and G′′ thus typically has a standard deviation
of ∼ 5-15 % of the modulus which characterizes the measurement
precision.
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