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1 Supplementary Methods

Constructing z from univariate effect estimates

More often than not, the summary data available for each marker m will consist only of
a univariate effect estimate, β̂m. However, we can construct estimates of the genotype
group means, ȳmg, and counts, nmg, required to define z as follows. First, using an
estimate of marker m’s minor allele frequency, p̂m, taken either from the original study or
an external source such as the 1000 genomes project, the group counts, nmg, are straight
forward to estimate if we assume the marker has reached Hardy Weinberg Equilibrium
(HWE):

n̂m0 = (1− p̂m)2

n̂m1 = 2p̂(1− p̂m)

n̂m2 = p̂2
m

Next, define ȳPop as the population mean value of y. Then, for all m, this may be
written as a weighted average of the group means, ȳmg, weighted by the true group counts;

ȳPop =
n0mȳ0m + n1mȳ1m + n2mȳ2m

n0m + n1m + n2m

As described earlier, for simplicity, we model the mean-centred phenotype, y, to avoid
fitting an intercept term. Therefore we have:

0 =
n0mȳ0m + n1mȳ1m + n2mȳ2m

n0m + n1m + n2m

(1)

If the assumptions underlying the linear regression model from which β̂m was esti-
mated hold perfectly, we also have;

ȳ1m = ȳ0m + β̂m (2)

and

ȳ2m = ȳ0m + 2β̂m (3)

Since we can estimate the group counts, we have a system of three simultaneous
equations (1), (2), and (3) in three unknowns, which may thus be solved to obtain esti-
mates of the three group means. Hence, substituting in the group count estimates, n̂mg
from above, and then substituting equations (2) and (3) into (1) we obtain the following
approximation for the wildtype mean;

0 ≈ n̂m0ȳm0 + n̂m1(ȳm0 + β̂m) + n̂m2(ȳm0 + 2β̂m)

n̂m0 + n̂m1 + n̂m2

therefore:

ˆ̄ym0 = − n̂m1β̂m + 2n̂m2β̂m
n̂m0 + n̂m1 + n̂m2

Approximations for ȳm1 and ȳm2 then follow from equations (2) and (3):

ˆ̄ym1 = ˆ̄ym0 + β̂m
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ˆ̄ym2 = ˆ̄ym0 + 2β̂m

We may now construct an approximation for z from n̂mg and ˆ̄ymg, using equation (2).
Therefore, our framework may be used to infer joint effect estimates from univariate effect
estimates, providing a full IPD genotype matrix is available from an external population
(note that this genotype matrix can be used to derive MAF estimates pm, as well as the
plug-in estimate for X

′
X).

Construction of plug-in estimate for X
′
X

We follow the method described by Yang and Visscher[2], to construct a plug-in estimate
for X

′
X , the unobserved P × P genotype variance-covariance matrix. Define as W the

genotype matrix from an external population (such as the 1,000 genonomes project). For
consistency with our intercept free formulation, genotypes for SNP m will be centred in
W such that for all individuals i, wi,m = −2pm, 1−2pm or 2pm where pm is the frequency
of SNP m in the external population. If the external population is of identical size to
the analysis population, we could simply approximate X

′
X with W

′
W . However, if

the external population is of a different size (as will nearly always be the case) we must
scale the variance and co-variances accordingly. First define DW as the diagonal matrix
of W

′
W , such that DW (m), the mth diagonal entry corresponding to marker m, is easily

obtained from W as
∑

iw
2
i,m. Similarly, define D as the diagonal matrix of X

′
X . We

have therefore not observed D, however, assuming HWE, it is straight forward to show
that the mth entry may approximated according to MAF pm from the external data as:

Dm ≈ 2pm(1− 2pm)n

Note that this approximation accounts for the mean centred genotype coding; the ex-
pression would be different expression if this was not the case. We may now approximate
X
′
X with B, where;

Bj,k =

√
DjDk

DW (j)DW (k)

∑
i

wi,jwi,k

Alternatively, in matrix form

X
′
X ≈ B = D1/2D

−1/2
W W

′
WD

−1/2
W D1/2

Exploiting block independence to extend to high dimensional
problems

The approximate inference approach described in the methods can be efficiently extended
to large numbers of SNPs if the block independence decomposition described in the online
methods is invoked (which will likely be necessary anyhow). We start by defining the
approximate normalising constant corresponding to to an analysis of block b in isolation,
considering models γb ∈ Γ∗b up to dimension 3:

Ĉb =
∑
γb∈Γ∗b

p(γb)p(γb|L−1
b zb) (4)
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The normalising constant corresponding to the joint analysis of all blocks, considering
all possible models up to dimension 3 within each block, may be written as:

Ĉ =
∑
γ1∈Γ∗1

...
∑
γB∈Γ∗B

p(γ1, ..γB)p(γ1, ..γB|L−1
1 z1, ..L

−1
B zB)

Under the block independence likelihood decomposition, and placing independent beta-
binomial (aω, bω) priors on model dimension in each block this becomes:

Ĉ =
∑
γ1∈Γ∗1

...
∑
γB∈Γ∗B

p(γ1)p(γ1|L−1
1 z1)...p(γB)p(γB|L−1

B zB)

=
∏

b=1,..B

Ĉb
(5)

where each Ĉb is given by (4). If we are interested in a particular SNP or combination
of SNPs in block b, γb say, the approximate posterior probability marginalised over all
other blocks reduces to that which would be obtained from an analysis of the block in
isolation:

p(γb) ≈ Ĉ−1p(γb)p(γb|L−1
b zb)∑

γ1∈Γ∗1

...
∑

γb−1∈Γ∗b−1

∑
γb+1∈Γ∗b+1

...
∑
γB∈Γ∗B

p(γ1)p(γ1|L−1
1 z1)...p(γb−1)p(γb−1|L−1

b−1zb−1)p(γb+1)p(γb+1|L−1
b+1zb+1)...p(γB)p(γB|L−1

B zB)

= Ĉ−1p(γb)p(γb|L−1
b zb)Ĉ1...Ĉb−1Ĉb+1...ĈB

= Ĉ−1
b p(γb)p(γb|L−1

b zb)

(6)

Therefore, invoking the block independence assumption and using independent but
calibrated beta-binomial priors, the genome-wide relative importance of block specific
SNPs or models may be estimated from an analysis of each block in isolation. Compu-
tationally speaking the genome-wide marginal scan amounts to no more than the total
computation of analysing each block in isolation - that is, computation increases linearly
with number SNPs. Specifically, the number of calculations, or evaluations of equation
(9) and (10) in the online methods: ∑

b=1,..B

Pb

where Pb is the total number of models in the truncated model space, Γ∗b , corresponding
to block b.

Model fitting via Reversible Jump MCMC

Here we describe how, alternatively to enumeration of models up to dimension 3, a Re-
versible Jump MCMC scheme and be used to sample from the posterior p(γ|zL) described
in the online methods[1]. The Reversible Jump sampling scheme starts at an initial model,
which we denote γ(0). To sample the next model, γ(1), we propose moving from the
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current model to another model γ∗ using a proposal function q(γ ∗ |γ). We then accept
the proposed model as the next sample with probability equal to the Metropolis-Hastings
ratio:

MHR =
P (zL|γ∗)P (γ∗)
P (zL|γ)P (γ)

× q(γ|γ∗)
q(γ ∗ |γ)

where P (zL|γ∗) is the likelihood described in equation (9) and P (γ) is the beta-
binomial model space prior defined in equation (10) of the online methods. Therefore the
proposed model is accepted with a probability proportional to it’s likelihood and prior.
If the new model is accepted, the proposed sample is accepted as γ(1); otherwise, the
sample remains equal to the current model, i.e., γ(1) = γ(0). It can be shown that this
produces a sequence of samples that converge to the required posterior distribution[1].
The algorithm is implemented in our software, and can optionally be used instead of the
enumeration approach described in the methods.
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2 Supplementary Figures
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Figure S1: Performance of JAM under the null, for a range of beta-binomial prior choices.
For each simulated SNP, average posterior probabilities over 200 replicates are given.
Ideally, since no signal exists, all averages should be near 0.7
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Figure S2: JAM run times for posterior model inference by enumeration up to dimension
3 for different numbers of SNPs. SNPs and analyses were decomposed into the same LD
blocks used in the simulations. Run times are plotted for an analysis of 132 SNPs over 4
blocks, 1000 SNPs over 32 blocks, 5000 SNPs over 152 blocks and 10000 SNPs over 304
blocks. Analyses were run on an Intel Xeon E5-2640 2.50GHz processor.
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Figure S3: Comparison of ranking performance by JAM against various other strategies
when data were simulated under single SNP models for 15,356 individuals (the total
size of the MAGIC consortium). Ranking performance is measured in terms of positive
predictive value (PPV), the proportion of true signal SNPs in the selection (solid lines, left
y-axis), and power/sensitivity, the proportion of all simulated signals included (dashed
lines, right y-axis). For each method, the average PPV and sensitivity estimates consist of
points for each SNP rank, which we have joined with lines to ease the visual comparison.
132 SNPs were simulated across 4 regions, each of which had a single effect. For LD
estimation, JAM was provided with an independently simulated reference dataset of
2,674, the size of the WTCCC control sample. Estimates are averaged over 200 simulation
replicates. A vertical grey line highlights the rank equal to the number of true signals,
where PPV and sensitivity by definition intersect. IPD: Individual Patient Data, ABF:
Wakefield’s Approximate Bayes Factor.
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Figure S4: Comparison of JAM performance between use of the true correlation structure
and true trait group means vs correlation structure from an independent sample and
trait group means reconstructed from marginal effect estimates. Ranking performance
is measured in terms of positive predictive value (PPV), the proportion of true signal
SNPs in the selection (solid lines, left y-axis), and power/sensitivity, the proportion of
all simulated signals included (dashed lines, right y-axis). For each method, the average
PPV and sensitivity estimates consist of points for each SNP rank, which we have joined
with lines to ease the visual comparison. Panel A) corresponds to a fine-mapping scenario
including 132 SNPs across 4 regions, and panel B) corresponds to a higher dimensional
setting in which 40 effects were simulated among 10,000 SNPs. Estimates are averaged
over 200 simulation replicates. A vertical grey line highlights the rank equal to the
number of true signals, where PPV and sensitivity by definition intersect. IPD: Individual
Patient Data; the full IPD multivariate analysis is presented to demonstrate ‘optimal’
performance.
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Figure S5: LD blocks analysed for each of the four genes re-analysed from the MAGIC
consortium results. Pairwise pearson r2 is plotted for each combination of SNPs (black =
1, white = 0). The red boxes indicate the correlation block (around the MAGIC reported
index) analysed for each gene in our case study, and the red dotted line highlights the
index SNP (or our tag in the case of GCKR and VPS13C). The location of additional
effects in our multi-SNP simulation studies are indicated in blue.
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Figure S6: Sensitivity analysis for ADCY5. The reference correlation structure from
WTCCC was perturbed by bootstrapping rows (with replacement) 10 times.
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Figure S7: Example trace plot of selection indicators provided by JAM in an analysis
of simulated summary statistics from 15,356 individuals (the total size of the MAGIC
consortium) for 132 SNPs over 4 regions. Multi-SNP signals (3 effects) were simulated
in each region. Predictors are ordered horizontally, and posterior samples from JAM are
ordered vertically from bottom to top. For each SNP, inclusion at the particular iteration
is denoted in black, and exclusion is denoted in white. This plot helps to visualise the
mixing patterns of the selection indicators and if variables seem to stick, i.e. do not come
in and out in a fairly regular manner. JAM was run for 2 million iterations.
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Figure S8: Example trace plot of selection indicators provided by JAM in an analysis
of simulated summary statistics from 15,356 individuals (the total size of the MAGIC
consortium) for 10,000 SNPs over 304 regions. Multi-SNP signals (3 effects) were simu-
lated in four of the regions. Predictors are ordered horizontally, and posterior samples
from JAM are ordered vertically from bottom to top. For each SNP, inclusion at the
particular iteration is denoted in black, and exclusion is denoted in white. This plot
helps to visualise the mixing patterns of the selection indicators and if variables seem to
stick, i.e. do not come in and out in a fairly regular manner. JAM was run for 20 million
iterations.
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Figure S9: Trace plot of selection indicators provided by JAM in an analysis of summary
statistics published by the MAGIC consortium for 132 SNPs over four regions analysed
in 15,356 individuals for association with glucose 2 hours after oral stimulation. SNPs
are ordered horizontally, and posterior samples from JAM are ordered vertically from
bottom to top. For each SNP, inclusion at the particular iteration is denoted in black,
and exclusion is denoted in white. This plot helps to visualise the mixing patterns of the
selection indicators and if variables seem to stick, i.e. do not come in and out in a fairly
regular manner. JAM was run for 2 million iterations. Sticking can be seen during the
first million iterations, but note that these iterations (the first half) were discarded as
part of the burn-in
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