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1 Material Development
Sequencing data for the NIST candidate reference material RM8376, genomic DNA
from Staphylococcus aureus strain NRS100 isolate COL (Biosample SAMN02854573)
was selected as a model system to demonstrate how PEPR is used to characterize a mi-
crobial genomic material. The strain was isolated from a clinical sample by Children’s
National Hospital (Biosample SAMN02700075). The genomic material represents a
large homogeneous batch of extracted DNA, with 1500 vials with 3µg DNA in each.
The extracted DNA was prepared from single colony of the initial culture stab was in-
cubated overnight at 37 °C on an agar plate and a single colony was used to inoculate
a new plate. One colony from the new plate was grown in 20 mL Luria-Bertani (LB)
broth at 37 °C. The culture was used to inoculate 15 X 150 mm plates which were
incubated at 37 °C for 16 hours. DNA was isolated by lysing the bacteria in a solution
containing NaCl, Tris, EDTA and lysostaphin (25µg/ml) and SDS. Proteinase K and
RNase A were used to treat protein and RNA. Ammonium acetate was used to remove
protein. DNA was recovered by isopropanol precipitation as follows, the DNA was
washed with 70% alcohol, drained, and dissolved in TE buffer (Tris 10 mM, EDTA 0.1
mM, pH8.0).

2 Sequencing Experimental Design
The S. aureus candidate reference materials were sequenced using three orthogonal
sequencing platforms: Pacific Biosciences RSII (PacBio)1, Ion Torrent PGM 2, and
Illumina MiSeq 3. For PacBio sequencing, the sequencing library was prepared using
DNA Template Prep Kit 3.0 with pooled DNA from three randomly sampled vials of
the candidate reference material RM8376. The resulting library was sequenced with the
P6-C4 chemistry. For the Ion Torrent PGM 2 and Illumina MiSeq 3 sequencing, eight

1Pacific Biosciences of California Inc.http://www.pacificbiosciences.com/ 1380 Willow Rd.
Menlo Park, CA 94025 USA

2Life Technologies Corp., http://www.iontorrent.com/ 7000 Shoreline Court # 201, South San
Francisco, CA 94080 USA

3Illumina Inc., http://www.illumina.com/ 5200 Illumina Way San Diego, CA 92122 USA
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Figure 1: Comparison of optical map data to genome assembly. Alignment of in-silico
genome map generated from the PacBio HGAP assembly to the OpGen optical map.
Blue bars in map represent NocI restriction sites, black lines indicate co-linear regions.

vials were randomly sampled from the lot of 1500 vials. For MiSeq, two technical
replicate libraries were prepared for each of the eight vials using the Nextera DNA
Sample Prep Kit3; samples were barcoded using the Nextera Index Kit and sequenced
using the MiSeq 600 cycle Reagent kit v3 for 2 X 300 bp reads. The 16 libraries
were pooled and sequenced in a single run. Single barcoded 400 bp Ion Torrent PGM
libraries were prepared for each of the eight vials using the Ion Xpress Plus kit 2. The
vials were barcoded using the IonXpress Kit3, sequencing template was prepared using
the Ion PGM Template OT2 400 kit and the IonPGM400 kit was used for sequencing on
a 318C chip. The raw sequence data is archived in the Genbank Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra), see Table 1 of main paper for accession numbers. A
genome map was obtained for the candidate reference material from optical mapping
data generated using the Argus Optical Mapping System4. Agarose plugs generated
from the same culture stock as that used to generate the DNA reference material were
used for optical mapping measurement. Restriction enzyme NcoI was used for the
restriction digest. These steps occured prior to our PEPR pipeline.

3 S. aureus Reference Assembly
PacBio long read data were used to generate a de novo genome assembly for use in
the Genome Evaluation Pipeline. PacBio Reads were assembled using SMRTAnalysis
software version 2.3 1 to apply the HGAP assembly algorithm [1]. To identify potential
errors in the assembly, an in silico digest of assembly was compared the genome map
obtained from the optical mapping data using OpGen MapSolver software4. The de
novo assembly was supported by Optical mapping data (Fig. 1). The plasmid is too
small for OpGen optical mapping technology, and therefore the plasmid assembly was
not validated with the optical mapping data.

4OpGen Inc. http://opgen.com 708 Quince Orchard Road Gaithersburg, MD 20878 USA
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Sequencing Error Adjusted and Multiple Comparison Corrected 

Read Depth Estimation 
 

Introduction 

A critical component in planning Next Generation Sequencing (NGS) experiments is determining 

appropriate read depth. This is particularly important for reliably detecting what if any 

differences exist between two biological samples, for example normal versus tumor tissue. The 

problem of determining appropriate read depth can be thought of as a sample size estimation 

problem with two important considerations. The first is the inclusion of systematic sequencing 

errors (SSE) on read accuracy; this can include quality score and other metrics. The second is 

controlling for multiple comparisons, which in the context of NGS is especially important as we 

are comparing millions/billions of locations between the two samples.  

In this analysis we develop a Bayesian method for helping to determine read depth and 

associated power estimates, taking into account both sequencing error and false discovery rate. 

Our specific focus will be to provide read depth estimates in the context of sample 

homogeneity assessment; i.e. looking at two sequences grown from the same batch and 

determining how deeply those sequences need to be sequenced in order to detect whether any 

differences exist.  

  

Sampling Distribution 

As this type of analysis is done prospectively to help determine appropriate read depth 

coverage for the final sample preparations, we work with simulated data only as no 

measurements have been taken. In order to arrive at an estimate of read depth we need a way 

to simulate observed purities, i.e. adjusted for SSEs and other distributional factors associated 

with an NGS experiment. Our objective is to compare the purities, simulated from two vials and 

determine if differences could be detected as we slowly change the underlying true purity of 

one vial, while holding the other fixed. Stated in terms of a hypothesis test we have 

 

��: purity of vial� = purity of vial� vs. ��: vial purities not equal. 
 

To generate these purities we used a Bayesian sampling scheme as a first step in our analysis, 

this is done prior to any adjustment for multiple comparisons which we describe in the 

following section. We now describe the sampling procedure. 

We begin by defining the terms of our model (note that these all pertain to the sampling 

of a purity associated with a base at a given position in the genome for a single vial), letting  

denote � read depth we have 

 

�� = The event that the reference base � ∈ !", $, %, &' is matched in read *, * = 1, … , �, 
-� = The occurence of a sequencing error at read *, * = 1, … , �, 
 

 



 

For each of these we assume the following probability distributions:

 

/��|-/��|--�~�2�34566*
Pr/89

 

The conditional distributions of the data can be understood as follows. For the case given by 

/��|-� = 0, 89;, i.e. where no sequencing errors have occurred, the probability of observing the 

correct reference base is related to the purity of that base, 

�2�34566*/89; distribution. For the case where a sequencing error 

/��|-� = 1, 89; the conditional distribution captures the event that the incorrect base is 

sampled but is identified as the reference base. For this reason the appropriate d

capturing this event is �2�34566*
below. 

 

Fig. 1 Model for purity of a base and sequencing errors

Of primary interest is to compute the posterior of 

the error parameter -�, which can be shown to be

8<9= ∼ Pr/89|�� , * = 1, …
∝ @A89

BC/
D

�E�
In order to sample 8<9= we must first generate ou

sampling a set of � sequencing errors 

that these errors could be allowed to vary

these we then sample our observed data as

For each of these we assume the following probability distributions: 

/ -� = 0, 89;~�2�34566*/89;, * = 1, … , � 
/ -� = 1, 89;~�2�34566*/1 F 89;, * = 1, … , � 

�2�34566*/G;, * = 1, … , � 
/ 9; = �2HI/J, K; 

ributions of the data can be understood as follows. For the case given by 

, i.e. where no sequencing errors have occurred, the probability of observing the 

correct reference base is related to the purity of that base, 

distribution. For the case where a sequencing error 

the conditional distribution captures the event that the incorrect base is 

sampled but is identified as the reference base. For this reason the appropriate d

�2�34566*/1 F 89;. An illustration of our model is shown in Figure 

 
of a base and sequencing errors 

 

Of primary interest is to compute the posterior of 89 given the observed data 

, which can be shown to be 

… , �;
/1 F 89;�LBC/1 F G; M 89

�LBC/1 F 89;BCGN O
we must first generate our observed data ��. To do this we begin by 

sequencing errors -� with a fixed error rate G (though it should be noted 

that these errors could be allowed to vary at each position based on quality scores, etc.

sample our observed data as 

 

ributions of the data can be understood as follows. For the case given by 

, i.e. where no sequencing errors have occurred, the probability of observing the 

correct reference base is related to the purity of that base, pb and follows a 

distribution. For the case where a sequencing error has occurred, 

the conditional distribution captures the event that the incorrect base is 

sampled but is identified as the reference base. For this reason the appropriate distribution for 

our model is shown in Figure 1 

 

given the observed data �� conditional on 

89PL�/1 F 89;QL�. 
. To do this we begin by 

(though it should be noted 

at each position based on quality scores, etc.). With 



�� ∼ �/J M S, K F S M 1;
�/J, K; = �2�34566* T J

J M KU , if -� = 0 and 

�� ∼ �/J F S M 1, K M S;
�/J, K; = �2�34566* T K

J M KU , if -� = 1. 
Here �/J, K; is the beta function which is defined as 

�/J, K; = Γ/J;Γ/K;
Γ/J M K;, 

with Γ/W; = X HYL�2LZ[H\
�  being the gamma function. With the observed samples �� we can 

now use Markov Chain Monte Carlo (MCMC) to sample 8<9=. For our analysis MCMC was 

implemented using the rjags package in the R programming language.  

 

Generating null and alternative distributions 

With a way to sample the observed purities 8<9=, our objective is to estimate the probability of 

detecting differences in purities between vials as we vary the true purity 89  (i.e. the power of 

the test).  

To do this we begin by estimating the null distribution, i.e. when the distribution of 89  is the 

same for both vials 1 and 2, specifically J� = J� and K� = K�, here the subscripts denote the 

corresponding vials parameters for the Beta distribution (note, this sampling is for a given read 

depth �). Recall that the expected value of the beta distribution is 
P

P]Q, so that the ratio of these 

parameters defines the underlying pure probability. In our analysis we consider two scenarios 

1. Vial 1 purity 89  with expectation 
P^

P^]Q^
= 0.99, with vial 2 expectation 

P`
P`]Q`

∈
!0.98, 0.96, … ,1'.  

2. Vial 1 purity 89  with expectation 
P^

P^]Q^
= 0.50, with vial 2 expectation 

P`
P`]Q`

∈
!0.48, 0.46, … ,1'.  

These are meant to capture the two cases of observed purities we would expect to see in 

experimental settings. 

Given scenarios 1 and 2, let 8<9=,e� /1; and 8<9=,e� /2;, g = 1, … , h denote draws from the null 

distribution for vials 1 and 2 respectively, define [e� =  8<9=,e� /1; F  8<9=,e� /2; to be the 

difference in the observed purities and [� = /[��, … , [i�; the collection of these differences. In 

a similar fashion we make draws from the alternative distribution, altering the expectation for 

vial 2 as defined above; for this case define [� = /[��, … , [i�; as the collection of these 

differences. With [� and [� we can now estimate the distribution of the differences for the null 

and alternative hypotheses. To do this we use the binned kernel density estimate function, 

bkde in R. 

 

Computing the power of the test 

Pictorially the power of our test, i.e. the probability of detecting a difference when one exists is 

shown below in Figure 2. Here the starting point of the green region (the power) is determined 

by the pre-determined level of significance j, i.e. the probability of rejecting the null when no 

differences exist. Typically this value is taken to be j = 0.05, but as will be discussed in the 



following section, in order to account for multiple comparisons we use an adjustment of this to 

determine the starting point for our power estimate.

Irrespective the cutoff associated with a particular value of 

quantile from the binned kernel density fit to the sampled differences in 

alternative distribution for [�

Fig. 2 Pictorial description of the power to detect significant 

distributions 

 

Adjusting for multiple comparisons

In order to adjust for multiple comparisons we use the well

adjustment for controlling False Discovery Rate (FDR). FDR procedures are designed to control 

the expected proportion of incorrectly rejected null hypotheses, i.e. false discoveries. In 

contrast, multiple comparison correction using family w

such as the Bonferroni correction, seek to reduce the probability of even one false discovery, as 

opposed to expected proportion of false discoveries. Thus FDR procedures have great 

the cost of increased rate false positives. 

In its most common form the BH adjustment calls for taking the computed p

ordering, smallest to largest as 

positions in the genome we are compu

proceeds by finding the largest 

k
l as representing the number of pairwise differences we might expect to see 

Put another way, if some number of difference are observed between vials at various positions 

in the genome, this proportion informs how many of those differences we expect to be 

versus artifacts of the large number of comparisons or feature of the experi

for example, taking 
k
l = 1.0 

real. The impact that this adjustment has on our powe

As the number of actual differences between sequences s

the ratio 
k
l, however, certain “real” differences do occur

differences may be detected, largely as a result of the massive number of comparisons being 

made, we believe only a small number of these 

following section, in order to account for multiple comparisons we use an adjustment of this to 

determine the starting point for our power estimate. 

Irrespective the cutoff associated with a particular value of j is established by finding the 

uantile from the binned kernel density fit to the sampled differences in [
� is then computed and corresponds to our estimate of power

Pictorial description of the power to detect significant difference between two 

Adjusting for multiple comparisons 

In order to adjust for multiple comparisons we use the well-known Benjamini

adjustment for controlling False Discovery Rate (FDR). FDR procedures are designed to control 

the expected proportion of incorrectly rejected null hypotheses, i.e. false discoveries. In 

contrast, multiple comparison correction using family wise error rate (FWER) based procedures, 

such as the Bonferroni correction, seek to reduce the probability of even one false discovery, as 

opposed to expected proportion of false discoveries. Thus FDR procedures have great 

the cost of increased rate false positives.  

In its most common form the BH adjustment calls for taking the computed p

ordering, smallest to largest as m/�; n m/�; n ⋯ n m/l;, where & denotes the number of 

positions in the genome we are computing pairwise comparisons for. The procedure then 

proceeds by finding the largest S such that m/k; n k
l j. Intuitively we can think of the proportion 

as representing the number of pairwise differences we might expect to see 

another way, if some number of difference are observed between vials at various positions 

in the genome, this proportion informs how many of those differences we expect to be 

versus artifacts of the large number of comparisons or feature of the experi

 would basically say that we believe all detected differences are 

real. The impact that this adjustment has on our power estimate is shown in Figure 

number of actual differences between sequences should be small so to should 

, however, certain “real” differences do occur so that S
differences may be detected, largely as a result of the massive number of comparisons being 

made, we believe only a small number of these reflect actual differences. For our purposes we 

following section, in order to account for multiple comparisons we use an adjustment of this to 

is established by finding the 

[�. The area under the 

and corresponds to our estimate of power. 
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differences may be detected, largely as a result of the massive number of comparisons being 

reflect actual differences. For our purposes we 



conservatively set  
k
l = 0.05, i.e. of the differences that are detected, we believe that only 5% 

may be attributable to real events (and

Fig. 3 Pictorial depiction of decrease in power to detect differen

comparisons 
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