
Definitions
The stiffness of a material can be defined mathe-

matically by various moduli (elastic, shear, or bulk), 
each one describing the resistance to deformation of 
a material in response to different types of stresses 
or applied pressures: tensile forces, shear forces, and 
volumetric compressive forces, respectively. The 
moduli are mathematically related to each other, and 
with some simplifying assumptions about underlying 
physical properties of tissues, can be interconverted. 

The moduli most relevant to shear wave elastog-
raphy are the complex shear modulus and the elas-
tic modulus (Young modulus), described here. The 
complex shear modulus, G*, describes the overall 
resistance of a material to an applied shear stress. It 
is a complex function of frequency, G*(ω) = G′(ω) 
+ iG′′(ω), where ω is the shear wave frequency and 
i is the imaginary component of the complex ex-
pression. As shown by the formula, the complex 
modulus has two components: an elastic compo-
nent called the storage or shear elastic modulus, G′, 
which is the real part of the complex shear modulus, 
and a viscous component called the loss or viscous 
modulus, G′′, which is the imaginary part of the 
complex shear modulus. Conceptually, the elastic 
component represents springlike energy-preserving 
behavior (e.g., a firm bouncy rubber ball), whereas 
the viscous component represents dashpot-like en-
ergy-absorbing and -damping behavior (e.g., a ball 
made of modeling clay). Thus, a tissue has shear 
stiffness due to both elastic behavior and viscous 

behavior. As discussed later, one area of active re-
search is to better understand how each contribution 
relates to specific pathophysiologic conditions. The 
magnitude of the complex shear modulus, G, which 
is equal to , is emerging as the standard parameter 
reported in current clinical implementations of MR 
elastography. It is commonly described in the liter-
ature as “shear stiffness.”

The effective shear modulus (µ) is a parameter 
reported historically in the MR elastography liter-
ature. This parameter is related to the shear-wave 
speed (assuming linear elasticity behavior, tissue 
isotropy and incompressibility) by the following 
equation: µ = ρc2 , where µ is the effective shear 
modulus, ρ is the density of the tissue (assumed 
to be 1 g/cm3), and c is the shear-wave speed. The 
shear-wave speed is a measure of the propagation 
velocity of a shear wave in tissue, and the shear-
wave attenuation describes its dissipation (loss of 
energy or amplitude). The shear-wave speed and 
attenuation are mathematically related to the shear 
elastic modulus and shear loss modulus; in general, 
shear-wave speed increases as the elastic modulus 
increases, and shear-wave attenuation increases as 
the loss modulus increases. Not to be confused with 
the storage or shear elastic modulus is the elastic 
or Young modulus, E, which indicates the stiffness 
when a compression force (as opposed to a shear 
force) is applied perpendicular to the surface. Under 
certain assumptions, the Young modulus is approx-
imately three times the storage modulus.

Frequency Dependence and 
Rheologic Models

Another key concept is that all the above terms 
are frequency dependent, meaning that the mea-
sured values of a tissue depend on the frequen-
cy of shear waves at the location of the measure-
ments. To convert these frequency-dependent 
terms to frequency-independent terms (e.g., elas-
ticity and viscosity), it is necessary to collect data 
at multiple frequencies (typically three or more) 
and then fit the observed data to one of several 
possible so-called rheological models describing 
the tissue (e.g., Maxwell model or Kelvin-Voigt 
model). These models make assumptions about 
the underlying structure of tissue, which allows 
them to derive frequency-independent terms 
from the frequency-dependent terms. A full dis-
cussion of these rheological models is beyond the 
scope of the current review, because the frequen-
cy-independent terms are not yet reported in clin-
ical applications.

Parameters and Units Reported
Depending on what the U.S. Food and Drug 

Administration has required, elastographic im-
aging techniques usually report only a subset of 
the variables that can be measured. Some report 
shear wave speed (in meters per second), whereas 
others report the magnitude of the complex shear 
modulus (in kilopascals), or the Young modulus 
(in kilopascals). 

TABLE S1: Parameters, Abbreviations, Units, Conversion Rules, and Concepts in Elastography

Parameters Abbreviation Units Conversions Concepts

Shear-wave speed c m/s c = λ ∙ f, where λ is the wavelength and f is the frequency of 
the shear wave

The shear wave speed indicates the propagation 
velocity of shear waves in a medium. 

Complex shear modulus G* Pa G* = G′(ω) + iG′′(ω), where G′ is the storage modulus, G′′ is the 
loss modulus, ω is the angular frequency and i the complex 
number

The complex shear modulus represents the solution of 
the inverse wave field propagation problem. It has a 
real (G′) and an imaginary component (G′′), which are 
both a function of frequency. It takes into account both 
the elasticity and viscosity behavior.

Storage or shear modulus G′ Pa
G′(ω) = ρω2 k′2 - α2 

(k′2 + α2)2 

, where ρ is the mass density, ω 
is the angular frequency, and k′ 
is the real part of the wave 

number (defined ω/c) and α is the imaginary part of the wave 
number (also called “attenuation”). When α = 0, as is 
commonly assumed in ultrasound elastography, then this 
equation can be simplified to G′ = ρc2, where c is the 
shear-wave speed.

The storage (or shear) modulus represents the real part 
of the complex shear modulus. It indicates elasticity 
(springlike behavior)—that is, the ability of a medium 
to resist shear deformation without energy loss.

Loss or viscous modulus G′′ Pa
G′′(ω) = −2ρω2 k′α 

(k′2 + α2)2 
, where ρ is the mass density, ω 
is the angular frequency, k’ is the 
real part of the wave number 

(defined ω/c) and α is the imaginary part of the wave number 
(also called “attenuation”). 

The loss (or viscous) modulus represents the imaginary 
part of the complex shear modulus. It indicates 
viscosity (dashpot-like behavior)—that is, resistance 
to movement or deformation.

Magnitude of the complex 
shear modulus

G Pa G = √(G′)2 + (G′′)2 , where G′ is the storage modulus and G′′ 
is the loss modulus.

The magnitude of the complex shear modulus. It 
indicates stiffness.

Effective shear modulus µ Pa  µ = ρc2 ,where ρ is the mass density and c is the shear wave 
speed.

The effective shear modulus is calculated at a particular 
frequency.

Elastic (Young) modulus E Pa E = 2 (1 + ν) ∙ G′, where ν (also known as Poisson ratio) is 0.5 
for soft tissue, hence: E = 3G′. When a tissue is assumed to 
be purely elastic, the equation can be rewritten as: E = 3µ = 
3ρc2 , where µ is the effective shear modulus calculated at a 
particular frequency, ρ is the mass density and c is the 
shear-wave speed.

The elastic modulus, known as Young modulus. It 
indicates elasticity (spring-like behavior)—that is, the 
ability of a medium to resist normal (perpendicular) 
deformation.


