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Supplementary	Figure	3.	Alternative	measures	of	traveling	wave	speed	
across	the	electrode	array.		
	
(a)	Mean	magnitude	of	the	velocity	vector	quantified	over	six	recruited	seizures	in	
three	epochs	(color‐coded	as	in	Figure	1).	(b)		Mean	traveling	wave	speed	
quantified	over	six	recruited	seizures	in	three	epochs	(color‐coded	as	in	Figure	1).	
Asterisks	indicate	significant	comparisons.	Bars	indicate	standard	error.		
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Supplementary	Figure	5.	Illusory	hypersynchrony	in	low	frequency	LFP.	(a)	
Low	frequency	LFP	recorded	from	grid	ECoG	electrodes	during	a	discharge	that	
occurred	early	in	the	pre‐termination	phase	of	the	seizure.	Each	colored	trace	
represents	a	different	electrode.	(b)	Low	frequency	LFP	recorded	from	grid	ECoG	
electrodes	during	the	final	discharge	in	the	seizure.	Each	colored	trace	represents	a	
different	electrode.	
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	Supplementary	Table	1.	Computational	model	parameters	

Parameter	 Notation	 Value	
Input	resistance	 ܴ௜௡௣௨௧ ൌ 1/݃௥௘௦௧	 125	MΩ	
Resting	membrane	potential	 	௥௘௦௧ܧ ‐68	mV	
Mean	maximal	intra‐network	synaptic	
conductance	

݃௦௬௡	 60	nS	

Mean	intra‐network	synaptic	conductance	
reversal	potential	

	௦௬௡ܧ ‐30	mV	

Extra‐network	feedforward	input	 ݃௜௡௣௨௧	 0	~	3	nS	
Reversal	potential	of	extra‐network	feedforward	
input	

	௜௡௣௨௧ܧ 0	mV	

Synaptic	depression	constant	 ߬஽	 200	ms	
Synaptic	depression	ratio	 ஽݂	 0.6	
Mean	maximal	firing	rate	 	଴ݎ 100	Hz	
Spiking	threshold	 ௧ܸ௛	 ‐42	mV	
Spiking	threshold	standard	deviation	 	ߪ 4.5	mV	
Synaptic	time	constant	 ߬௩  25	ms	
	

	 	



Supplementary	Table	2.	Clinical	details	from	study	patients	
	
Patient	
(Age/Gender)	

1	(30/F)	 2	(30/M)	 3	(32/F)	 4	(19/F)	 5	(24/M)	

Array	
Recruited	
into	ictal	
Core?		

No	
(penumbral)	

No	
(penumbral)	

Yes		 Yes	 Yes	

MEA	location	 Left	
supplementary	
motor	area,	3	
cm	superior	to	
Broca’s	area	

Left	lateral	
frontal,	2	cm	
superior	to	
Broca’s	area	

Left	inferior	
temporal	
gyrus,	2.5	
centimeters	
from	temporal	
pole	

Right	
posterior	
temporal,	1cm	
inferior	to	
angular	gyrus	

Left	middle		
temporal	
gyrus	3	cm	
from	
temporal	pole	

Clinically	–
Defined	
Seizure	Onset	
Zone	

Left	
supplementary	
motor	area	
(including	
MEA	site)	

Left	frontal	
operculum	
(including	
MEA	site)	

Left	
basal/anterior	
temporal	
(including	
MEA	site)	

Right	
posterior	
lateral	
temporal	
(including	
MEA	site)	

Left	mesial	
temporal	lobe	
spread	to	
lateral	
temporal	lobe	
(including	
MEA	site)	

Number	of	
Seizures	
examined	

7	 3	 3	 1	(MEA	
recording	
curtailed	
during	post‐
recruitment	
epoch)		

2	

Seizure	
Types	

Complex	
partial	

Complex		
partial	

Complex	
partial	

Complex	
partial	with	
secondary	
generalization	

Complex	
partial	

Pathology	 N/A	(multiple	
subpial	
transections	
performed)	

Nonspecific	 Mild	CA1	
Neuronal	loss;	
lateral	
temporal	
nonspecific	

Nonspecific	 Nonspecific	
(no	
hippocampal	
sclerosis)	

Outcome		 Engel	III	 Engel	1a	 Engel	1a	 Engel	1a	 Engel	1a	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	1	

	

LFP	synchrony	increases	toward	the	end	of	seizures	

We	observed	decreased	MUA	desynchronization	over	the	MEA	

(Supplementary	Figure	4A),	and	corresponding	decreases	in	high	gamma	over	ictal	

core	ECoG	sites	in	all	five	patients	leading	up	to	seizure	termination.	We	interpreted	

these	signals	to	be	indicative	of	a	progressive	desynchronization	leading	up	to	

seizure	termination,	which	is	in	contrast	to	the	increased	synchrony	observed	in	

previous	ECoG	studies	1‐4.		In	order	to	confirm	large‐scale	(centimeters	of	brain	

area)	pre‐termination	synchrony	in	the	current	dataset,	and	control	for	the	

possibility	that	the	seizures	examined	here	have	different	dynamics	than	those	

reported	in	the	literature,	we	examined	synchrony	in	the	broadband	LFP	recorded	

across	the	ECoG	grids	overlying	each	MEA	channel.		Synchrony	was	measured	in	a	

similar	manner	to	previous	studies	1,5,	by	examining	the	amount	of	variance	that	can	

be	explained	by	the	single	largest	covariance	dimension	using	principal	components	

analysis.	We	found	that	synchrony	increased	across	the	ECoG	grids	prior	to	seizure	

termination,	consistent	with	previous	observations.		However,	this	increase	in	

synchrony	was	apparent	on	ECoG	electrodes	in	patients	with	the	MEA	in	either	the	

ictal	core	or	the	penumbra			(Supplementary	Figure	4B	and	4C).	There	was	also	no	

significant	difference	among	patients	in	the	pre‐termination	increase	in	synchrony	

(Mann‐Whitney	U,	p	=	0.12,	Supplementary	Figure	4D).	These	results	suggest	that	

previously	observed	increases	in	synchrony	are	dominated	by	the	low	frequency	



LFP,	which	accounts	for	an	exponentially	large	portion	of	the	ECoG	signal	variance,	

compared	to	high	gamma.		

	

Supplementary	Note	2	

	

Computational	Model	

We	modeled	macrocolumns	of	cells	in	the	ictal	core	using	a	mean	field	

approach,	where	the	firing	rate	of	a	typical	cell	was	used	to	approximate	the	entire	

macrocolumn.	Cells	received	intra‐network	recurrent	synaptic	input	and	extra‐

network	current	input.	The	typical	cell	membrane	potential,	V,	was	modeled	with	

the	following	set	of	equations:	

	

߬௩
ܸ݀
ݐ݀

ൌ ∞ܸ െ ܸ	

	

∞ܸ ൌ
݃௥௘௦௧ ∗ ௥௘௦௧ܧ ൅ ݃௦௬௡ ∗ D ∗ fሺVሻ ∗ ௦௬௡ܧ ൅ ݃௜௡௣௨௧ ∗ ௜௡௣௨௧ܧ

݃௥௘௦௧ ൅ ݃௦௬௡ ∗ D ∗ fሺVሻ ൅ ݃௜௡௣௨௧
	

	

߬௩ ൌ
ܥ

݃௥௘௦௧ ൅ ݃௦௬௡ ∗ D ∗ fሺVሻ ൅ ݃௜௡௣௨௧
	

	

Where	߬௩	is	the	effective	time	constant	for	change	in	the	membrane	potential	over	

time	and	 ஶܸ	is	the	steady	state	membrane	potential.	Input	to	the	network	of	cells	

was	represented	with	the	݃௜௡௣௨௧	term	and	recurrent	connections	among	cells	were	



treated	as	intra‐network	synaptic	input,	which	was	modeled	with	the	݃௦௬௡ ∗ D ∗

fሺVሻ ∗ 	intra‐network	maximal	for	stand	fሺVሻ	and	݃௦௬௡	term,	this	In		term.	௦௬௡ܧ

recurrent	synaptic	conductance	and	firing	probability	as	a	function	of	membrane	

potential,	respectively.		Firing	probability	followed	the	following	error	function	

	

݂ሺܸሻ ൌ 	න
1

ߪߨ2√
݁ିሺ௨ି௏೟೓ሻ

మ/ଶఙమ݀ݑ
௏

ି∞
	

	

	 Synaptic	depression	evoked	by	repeated	activations	was	included	in	the	

model.	Because	repetitive	synaptic	transmissions	in	the	cerebral	cortex	has	been	

found	to	induce	short‐term	synaptic	depression	(STD)6,		the	effective	synaptic	

strength	D	was	modeled	with	the	following	set	of	equations:	

	

߬஽
ܦ݀
ݐ݀

ൌ ∞ܦ െ 	ܦ

	

∞ܦ ൌ
1

1 ൅ ሺ1 െ ஽݂ሻ ∗ ଴ݎ ∗ ݂ሺܸሻ ∗ ߬஽
	

	

Where	 ஽݂represents	the	synaptic	depression	ratio	(i.e	how	much	a	post	synaptic	

potential	is	depressed	following	a	preceding	potential)	and	ݎ଴	represents	a	typical	

cell’s	maximal	firing	rate.	ܦ∞	was	obtained	by	assuming	a	pre‐synaptic	Poisson	

spiking	property	7.	Note	that	very	sophisticated,	biologically	inspired	models	exhibit	

similar	properties	8.	



Table	S1	shows	parameters	used	for	computational	simulation.		The	

parameters	were	chosen	based	on	experimental	data	from	layer	5	pyramidal	

neurons	9,10.	Two	exceptions	were	the	mean	maximal	recurrent	conductance	and	

average	reversal	potential,	݃௦௬௡and	ܧ௦௬௡	respectively.	The	value	of	ܧ௦௬௡	was	chosen	

by	averaging	the	reversal	potentials	of	GABA	and	glutamate	receptors	in	order	to	

model	both	inhibitory	and	excitatory	intra‐network	connections.	The	value	of	݃௦௬௡	

was	chosen	to	make	the	typical	cells	demonstrate	tonic	firing	while	receiving	

maximal	recurrent	input.	Numerical	results	were	calculated	by	XPP	with	a	0.1	ms	

time	step	using	the	Runge–Kutta	fourth	order	method	11.		

The	computational	model	was	thus	established,	and	decreasing	input	was	

applied	in	order	to	simulate	the	effects	of	a	progressively	weakening	or	moving	ictal	

wavefront.	The	value	of	݃௜௡௣௨௧	was	therefore	decreased	linearly	from	3	to	0	nS,	with	

seizure	dynamics	being	reproduced	between	approximately	2.7	and	2.2	nS.		

	

Cortical	reconstruction	and	ECoG	alignment	

Cortical	reconstruction	and	volumetric	segmentation	was	performed	with	

the	Freesurfer	image	analysis	suite,	which	is	documented	and	freely	available	for	

download	online	(http://surfer.nmr.mgh.harvard.edu/).	
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