Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

¹Nolden T, ²Pfaff F, ¹Nemitz S, ¹Freuling CF, ²Hoeper D, ¹Mueller T and ^{1*}Stefan Finke

¹Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, D-17493 Greifswald – Insel Riems, Germany ²Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, D-17493 Greifswald – Insel Riems, Germany

Determination of virus leader and trailer sequences by RNA T4 ligase-mediated endjoining (A) Schematic presentation of T4-RNA mediated RNA end-joining for determination of virus end-sequences. The oligonucleotide L16endseq (P2) was used for priming the reverse transcriptase reaction before amplification and sequencing of the PCR product spanning the RNA ligation site. (B) RT-PCR products of T4-RNA ligase-mediated end-joining. Positive RT-PCR signals were obtained, when RppH digestion was performed as separate reaction or as in a single tube reaction together with T4-RNA ligase (lane1 and lane3, respectively). Without removing 5' triphoshate, RNA end-joining was less effective (lane 2). No PCR products were obtained when T4 RNA ligase or reverse transcriptase was absent (lane 4, 5 and lane 6, respectively). (C) Sequence alignment of SAD L16, RABV-Dog and RABV-Fox end-sequences. For reference SAD B19 leader and trailer sequences were concatenated.

Construction of pHaHdmin and PCR amplification of a linear minimal cloning vector.

(A) pHaHdmin was generated by amplification of two PCR fragments from pCMV HaHd miniGFP and re-ligation via *SpeI / NheI* and *MfeI / EcoRI* compatible ends introduced by the 5' ends of the PCR oligonucleotides (indicated by arrows) . The "vector shaving" decreases the size of the minimal linear cloning vector amplified from pHaHdmin by PCR and reduces the possibility of intramolecular recombination in subsequent steps of RecE/T recombineering. The 50bp homology arms, compatible to RABV leader (green) and trailer (red) sequences were introduced by the pHaHdmin-specific oligonucleotides which binds within the ribozyme sequences of the vector pHaHdmin (B). Promotor sequences, that drives virus cDNA and ampR gene transcription are colored blue; CMV_{IE}, Cytomegalievirus imidiate early promotor; T7 and T7 term, promotor and terminator signal sequences of T7 bacteriophage; ori, origin of replication.

Insertion of the MCS with an additional RABV Start-Stop signal and the fluorescent marker Katushka into pRABV-Dog and pRABV-Fox. The G/L intergenic region of pRABV-Dog (A) was amplified with primer pairs P1/P2 and P3/P4 (see Supplementary Table S3). Generated PCR products were concatenated using the *Sac*II site within the primer 5' overhangs (underlined). The resulting product with an additional stop-start signal (framed) was re-amplified with P1 and P4 and subsequently cloned into pRABV-Dog via *KpnI/EcoRI* to yield pRABV-Dog MCS (B). The fluorescent marker Katushka from pSAD L16 Katushka (unpublished) was inserted in a second step into pRABV-Dog MCS via *Nhe*I and *Not*I sites (in red). pRABV-Fox Katushka was constructed in a similar strategy was used (see material and methods

section).

Supplementary Table S4

pCMVHAHd GFPmini "vector Shaving"

primer	sequence	comment
miniP-CMV-for	CGTTGACATTGATTATTGAC	
miniP-EcoRI-R	ATCGTG <u>GAATTC</u> ATATAGTTCCTCCTTTCAGC	
miniP-Mfel-F	ATCGTG <u>CAATTG</u> AGGCCAGCAAAAGGCCAGGA	restriction sites, underli
miniP-Nhel-R	ATCGTG <u>GCTAGC</u> AAATACATTCAAATATGTAT	

RABV long range PCR

primer	sequence	comment
B19-for	tcgatcccgggtcacgcttaacaaccagatca	
B19-rev	taatacacctgcccatgccgacccacgcttaacaaataaacaa	leader/trailer, red
RABV-for	tcgatcccgggtcACGCTTAACAACAAAATCA	
RABV-rev	taatacacctgcccatgccgacccACGCTTAACAAAAAAAAAAAAA	

Katushka cloning

primer	sequence	comment
Dog-MCS-for (P3)	ATGCTA <u>CCGCGG</u> GCCGGCGGCGGCGGCGGTAACACCGGTAGCTTTTCAGTCGAGAAAAAACTG	Sacl underlined, MCS in I
Dog-MCS-rev (P2)	ATGCTA <u>CCGCGG</u> GCTAGCCAGATCCGAAAGGAGGGTTGTTAGTTTTTTCTCGACTGAAAAGC	
Dog-KpnI-for (P1)	TCCAGGAACT <u>GGTACC</u> AAAGG	
Dog-EcoRI-rev (P4)	CCTCGGGGG <u>GAATTC</u> TCAACCCTC	
Fox-Eco72I-rev (P5)	GAGTTTCCACACGTGGACAAG	

Batai Virus specific endsequencing and LLHR

primer	sequence	comment
BATV L ital 6667 fw	CATAGAGAAGACTATATTCC	endsequencing
BATV L ital 213 rv	TATCTAGAATAATCTCATCC	endsequencing
BATV-Lseg-for	CGGAGTCCCGGGTCAGTAGTGTACTACCGATAC	full genome PCR
BATV-Lseg-rev	CCCAGGTCGGACCGCGAGGAGGTGGAGATGCCATGCCGACCCAGTAGTGTGCTACCGATATAAT	full genome PCR

BATV Tr-for	CCATAGAACAGCATTTAAGATCAATTTCTTTTATATAGGAGCACACTACTGGGTCGGCATGGCATCTCCACC	pHaHdmin amplification
BATV Le-rev	ATTTTATTGATGAATTTTATTGTAATTTCTTTATATAGGAGTACACTACTGACCCGGGACTCCGGGTTTCGTCCTCACGGACTCATCAGAGTAGTGTGCGGCCGCCCTATAGTGAGTCG	pHaHdmin amplification
BATV L 1300 fw	TAATACGTGCCAATCCAC	
BATV L 1401 rv	GCAAATTTATCCAATAGC	
BATV L 1898 fw	GTCAAATTCACTTAAATC	
BATV L 2498 fw	TAACACCTTTAGGGTGGC	
BATV L 3101 fw	AGAGTCTATATGGTTTCC	
BATV L 3605 fw	ACTAACTAAGAAGATACC	
BATV L 4177 fw	TTGCAAATATCCTTGATC	
BATV L 4800 fw	CTCAATTATCTCCCTTTC	Companying animag
BATV L 5400 fw	TATAGTAGTATCTTTGAC	Sequencing primer
BATV L 6001 fw	ATTTTTGCACTTTAATAC	
BATV L 6600 fw	TTAGATGATAAGTACAAC	
BATV L 7179 fw	GTATCAAAATTGGTAACC	
BATV L 7551 fw	ATGAATAAAGAAGCCAAC	
BATV L rv 4932	GTTTCTCGTTGTTTGTCC	
BATV L 2083 rv	ACAAAACAAGTGCATTGCC	
BATV L 5632 rv	TTTGGTTAGCACTTAGTCC	