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Analytical approach

In addition to the computational results described in the main text, we developed

a mathematical model in order to better understand the mechanisms by which

mixed dispersal affected population density and extinction time. This approach is,

in essence, an analytical evaluation of the population average exponential growth

rate of the computational model. This growth rate can be defined as:

G = lim
t→∞

1

t
log

N(t)

N(0)
. (A1)

This quantity is negative for shrinking populations, positive for growing ones, or

zero in the marginal or critical case; therefore, the sign of G can be regarded as

an indicative proxy of the fate of the population. We calculated G as a function

of the environmental and inbreeding parameters for different types of homogeneous

populations with a fixed value of α: i) Single phenotype dispersing syndrome (α =

1), ii) Single phenotype non-dispersing syndrome (α = 0) and iii) mixed syndromes

(0 < α < 1). The mathematical analyses can be performed under the following

approximations:

• Saturation effects –which become important at large densities preventing the

population from growing infinitely– are neglected. Therefore, the following

calculations provide valuable information only for the dynamics of low-density

populations, allowing in particular the determination of critical points, but not

to study stationary states.

• System sizes are sufficiently large, so that, statistical deviations from mean

values can be safely neglected.

• Spatial correlations are not included; i.e. all sites are assumed for simplicity

to be nearest neighbors.

In the terminology of statistical mechanics these approximations taken together

constitute a linearized “mean field” approach [1, 2].

Dispersal syndrome (α = 1)

In this approximation, npext(t) is the average number of established seeds per plant

at any given generation t. Thus, starting from a population N(t = 0) individuals
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after t generations the population size becomes

N(t) = npext(t)N(t− 1) = ... =

(
t∏
i=1

npext(i)

)
N(0). (A2)

Using this expression and the definition of G,

G =
1

t

t∑
i=1

log (npext(i)) = 〈log (npext(t))〉t , (A3)

where 〈·〉t represents the temporal average over generations using the probability

distribution of pext(t). Observe that, as

1

t

t∑
i=1

log (npext(i)) = log(Πt
i=1 (npext(i))

1/t
), (A4)

the overall growth rate coincides with the geometric mean of growth rates across

generations; i.e. population growth rate is a multiplicative process [3].

In the particular case in which pext is uniformly distributed in the range [p̄ext −
σ, p̄ext + σ] (and assuming that all possible values of pext have been homogeneously

sampled for sufficiently large times t), G can be explicitly calculated as

G =

∫ p̄ext+σ

p̄ext−σ
dpext

1

2σ
log (npext)

1

2σ
log

(
n2σ (p̄ext + σ)p̄ext+σ

(p̄ext − σ)p̄ext−σ

)
− 1, (A5)

valid for σ < pext, while for the case in which σ = pext the integral gives:

G = log(2np̄ext)− 1. (A6)

Because the critical regime separates positive from negative population growth

rates, it can be determined by solving the integral for G = 0. The resulting equa-

tions describing the critical regime as a function of σ and p̄ext can then be solved

numerically. These solutions are plotted as a dashed line in Fig. 3 of the main text.

In the case where σ = p̄ext, the critical point is located at p̄cext = e/2n (in our

simulations we take n = 5, and therefore p̄cext ' 0.27).

Non-dispersal syndrome (α = 0)

As, in this case, all seeds are inbred, their quality parameter q is reduced by a factor

(1− δ) in each generation; i.e.

q(t) = (1− δ)q(t− 1) = ... = (1− δ)tq(0). (A7)

As the establishment probability is pint × q(t), a dramatic (exponential) reduction

of this probability can be expected in time for any inbreeding penalty factor δ > 0.

In particular, assuming that all individuals in the community start with a common
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quality q(0) and taking into account that 1+2+...+t−1 = t(t−1)/2 the population

size at generation t is:

N(t) = nq(t− 1)pintN(t− 1) =

(
t∏
i=1

n(1− δ)i−1q(0)pint

)
N(0)

= (1− δ)t(t−1)/2 (nq(0)pint)
t
N(0). (A8)

From this equation, G can be expressed as

G = lim
t→∞

log
(

(1− δ)(t−1)/2nq(0)pint

)
. (A9)

Note that, for any δ > 0, we always find that G < 0 as limt→∞G = −∞. Instead,

in the absence of inbreeding depression (δ = 0), the critical transition point, G = 0,

is found at pcint = (nq(0))−1 (see the inset of Fig. 3 in the main text).

Mixed dispersal syndrome (0 < α < 1)

The calculation for mixed dispersal strategies is slightly more complicated than the

two previous single-phenotype cases. For mixed dispersal, the quality parameter

becomes a stochastic variable. The quality of non-dispersing seeds can be multi-

plicatively reduced sequentially (as for the α = 0 case above); however, in the

case of mixed strategies, the quality parameter is reset to one whenever seeds are

dispersed. Despite the complexity of these dynamics, the distribution of quality pa-

rameters in the community, P(q, t), reaches a stationary state after a sufficiently

large number of generations. A practical way to estimate the value of the station-

ary quality parameter consists in computing its mean value, q̄, over individuals and

generations. To do that we fix it self-consistently by imposing its mean value to

remain unaltered from one generation to the next.

Defining Nα=0(t) and Nα=1(t) as the number of individuals grown from non-

dispersed and dispersed seeds at generation t, respectively, the stationary quality

can be expressed mathematically as

q̄ =

〈
1 · N

α=1(t)

N(t)
+ (1− δ)q̄ N

α=0(t)

N(t)

〉
t

=

〈
αnpext(t) + (1− α)npint(1− δ)q̄2

αnpext(t) + (1− α)npintq̄

〉
t

,

(A10)

This equation can be solved –even if implicitly– for q̄ as a function of the dynamical

parameters. In the case where pext(t) is uniformly distributed in the range [p̄ext −
σ, p̄ext + σ], and assuming that time t is large enough as to homogeneously sample

all values of the pext distribution, the average quality can be calculated as:

q̄ = 1 +
1

2σα
pint (1− (1− δ)q̄) q̄(1−α) = log

pintq̄(1− α) + α(p̄ext − σ)

pintq̄(1− α) + α(p̄ext + σ)
. (A11)

The numerical solution of eq. A11 is represented in Fig. A1 (upper panel) as a func-

tion of the parameter α for different values of inbreeding depression δ. The numerical

solutions are presented together with the comparable computational approxima-

tions. This figure shows that, as expected after multiple generations q̄(α = 0) = 0
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and q̄(α = 1) = 1 corresponding to the quality of populations with single non-

dispersal and dispersal syndromes respectively. We can see that, although we have

used a simplistic approximation, the computed q̄ constitutes a good estimate of the

actual value determined from computer simulations of the full model.

Using the inferred value of q̄ = q̄(α, p̄ext, σ, pint, δ), we can compute N(t):

N(t) = (αnpext(t) + (1− α)nq̄pint)N(t− 1) = ... =

t∏
i=1

(αnpext(i) + (1− α)nq̄pint)N(0),

(A12)

and from this

G = 〈log (αnpext(t) + (1− α)nq̄pint)〉t , (A13)

which in the case of a uniformly distributed environment in [p̄ext − σ, p̄ext + σ]

becomes

G = −1+
1

2σα
log

(
n2σα [(1− α)q̄pext + α(p̄ext + σ)]

(1−α)q̄pext+α(p̄ext+σ)

[(1− α)q̄pext + α(p̄ext − σ)]
(1−α)q̄pext+α(p̄ext−σ)

)
(A14)

where q̄ = q̄(α, p̄ext, σ, pint, δ) is the solution of eq. A11. In Fig. A1 (lower panel)

the growth rate is plotted as a function of the dispersal fraction α, for the same

choice of parameters in Fig. 5 in the main text, i.e. when both dispersing and non-

dispersing syndromes are nonviable (G(α = 0, 1) < 0). As a consequence of its

parabolic-like shape, G intersects zero and becomes positive for intermediate values

of the dispersal fraction. Therefore, the analytical prediction confirms that even

when populations exhibiting either of the single phenotypes are bound to collapse,

mixed dispersal syndromes can allow for long term population stability.
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Padova, Via Marzolo, 8, 35131 Padova, Italy. 3Departamento de Ecoloǵıa, Facultad de Ciencias, Universidad de
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Figure A1 (Upper panel) Results of the self-consistent calculation used to estimate the
averaged quality factor of seeds in a population with mixed dispersal strategies. After a
sufficiently large number of generations, the quality parameter q converges, on average, to a
steady state value q̄, which depends on α as shown for three different values of the inbreeding
depression parameter δ. The approximate values obtained within the self-consistent calculation
(solid lines) are not far from the computational measured results (colored points), indicating that
the approximations are sound. Observe that in the limit δ → 0 the curves converge to q̄ = 1 as
expected. (Lower panel) Exponential growth rate G as a function of the dispersal
propensity parameter α. The growth rate, given by eq. A14, interpolates non-linearly
between G(α = 0, δ > 0) = −∞ (eq. A9) and G(α = 1) (eq. A5). As a consequence of its
parabolic-like shape, G(α) intersects at zero, and intermediate values of the dispersal propensity
parameter, α can be associated with G(α) > 0, even if G(α = 0, 1) < 0 (extinction); i.e., mixed
dispersal can allow large populations to survive indefinitely. Parameters are as in Fig. 5 of the
main text: pint = p̄ext = σ = 0.25, n = 5 and, in the lower panel, δ = 0.05. Each point was
computed in a community of L = 100, averaging over the last 105/2 generations of 10
independent simulations iterated for 105 steps.


