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Supplemental Methods 

	
  

Cohorts and sample collection 

The International Headache Genetics Consortium (IHGC) study collected 23 285 cases with 

migraine and 95 425 controls from 29 studies for a meta-analysis of genome-wide association 

data.1 For a subset of the cohorts sufficiently detailed phenotype information was available to 

allow subclassification into either of the two migraine subtypes, migraine with aura (5 118 

cases versus 74 239 controls) or migraine without aura (7 107 cases versus 69 427 controls).2 

The CARDIoGRAM study combined data from 14 GWAS studies of CAD for a total of 22 

233 cases versus 64 762 controls. Three study cohorts were part of both the IHGC and 

CARDIoGRAM studies (deCODE, 1958 Birth Cohort and KORA). To assure independence 

between the migraine and CAD datasets we reperformed the IHGC migraine meta-analysis 

without deCODE and 1958 Birth Cohort, and the CARDIoGRAM CAD meta-analysis 

without GERMIFS III (KORA), resulting in two datasets without overlapping samples (19 

981 migraine cases versus 56 667 controls, and 21 076 CAD cases versus 63 014 controls). 

Descriptions of the included cohorts, and criteria for diagnosing migraine or CAD in each 

study, are given in Tables e1 and e2. In addition to using summary statistics (P value, effect 

allele, effect size for SNPs) from these studies, we also used individual-level genotype data 

from the six migraine cohorts where such data were available: German MA (997 cases, 1105 

controls), German MO (1208 cases, 2564 controls), LUMINA MA (820 cases, 4774 

controls), LUMINA MO (1118 cases, 2016 controls), Finnish MA (1032 cases, 3513 

controls) and the HUNT Study, Norway (MO cases only; 1175 cases, 1097 controls). 

Genome-wide association studies 
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For a complete description see the original publications of the CARDIoGRAM3 and IHGC 

migraine studies.1 In the IHGC migraine study genome-wide SNP genotyping was performed 

independently in each cohort with the use of various standard genotyping technologies, and 

imputed for each study with reference to HapMap release 21 or 22 CEU phased genotypes.4 

Each study contributed summary statistic data from an association analysis performed using a 

frequentist additive model based on an expected allelic dosage model for SNP markers, 

adjusting for gender. SNPs were filtered on per-study level based on inclusion criteria of 

MAF>0.1% and imputation quality measures of IA > 0.6 (IMPUTE 25) or r2 > 0.3 (MACH6). 

In the meta-analysis performed for migraine in the current study, combined association data 

for about 2.5 million imputed and genotyped autosomal SNPs were analyzed in a fixed-

effects model using GWAMA. At this stage, SNPs with a heterogeneity coefficient I2 

exceeding 75% or presence in less than five studies were filtered out. In the meta-analysis, 

there was little evidence of population stratification at the study level (each genomic inflation 

factor λ ≤ 1.1), though moderate inflation was observed at the meta-analysis level (λ = 1.13). 

In the CARDIoGRAM study genotyping was performed independently in each cohort with 

the use of Affymetrix or Illumina platforms, and individual studies were imputed with 

reference to HapMap release 21 or 22. Association analysis for each study was performed 

using a log-additive model frequentist test adjusting for age and gender and taking into 

account the uncertainty of possibly imputed genotypes. Quality control was performed 

centrally according to previously agreed criteria including check of consistency of the given 

alleles across all studies, quality of the imputation, deviation from Hardy-Weinberg 

equilibrium in the controls, minor allele frequency, and call rate. In the CAD meta-analysis 

our default was a fixed-effect model with inverse variance weighting, but as in the original 

CARDIoGRAM study, where heterogeneity was present (P for Cochran’s Q <0.01) we 

adopted and reported a random-effects model (DerSimonian-Laird) for that SNP. There was 
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little evidence of population stratification at the study level,3 though moderate inflation was 

observed at the meta-analysis level in the current study (λ = 1.14).  

Allele specific frequencies were compared between the two datasets (migraine and CAD), to 

make sure that analyses were not biased by systematic allele flips. Manhattan plots for the 

migraine and CAD genome-wide association analyses used in the current study are given in 

Figure e4. 

Cross-phenotype spatial mapping 

Our cross-phenotype spatial mapping method (fully described in an upcoming manuscript) 

identifies genomic windows exhibiting similar association patterns across two phenotypes 

using a signal processing approach. We compute Pearson’s covariance between P values 

from two traits across a 60 kb sliding window. In each iteration, the window slides to the next 

SNP so we obtain a covariance coefficient for each SNP in the analysis. We then detect peaks 

of signal across the genome in the covariance trace. The signal ns  for a given SNP with index 

n, position nb  (base pairs), and association P values 1, 2,,n np p  for two phenotypes is 

calculated as follows: 

 10 1, 10 1,log , , logj kx p p⎡ ⎤= − −⎣ ⎦L  (1) 

 10 2, 10 2,log , , logj ky p p⎡ ⎤= − −⎣ ⎦L .  (2) 
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Where each , , ,i j kb b b∈ L  is the position of SNP i within the window of SNPs j,⋯,k 

containing SNP n. For a given window size d (base pairs), the window of SNPs j,⋯,k is 

defined such that j is the smallest SNP index where 
2n j
db b− ≤  and k is the largest SNP index 

where 
2k n
db b− ≤ . 

After constructing the CPSM signal for all SNPs, we correct for strong associations present in 

only a single phenotype by permuting the association P values for one phenotype 1,000 times 

while holding the other phenotype constant, and recalculating CPSM. From the total set of 

2,000 permutation signals (1,000 per phenotype), we take the upper 0.95 quantile at each 

SNP as the background signal threshold and subtract it from the observed covariance as a 

correction. We then detect regions of shared association as peaks above the 99.95th percentile 

of the covariance signal.  

 

Expression quantitative trait locus (eQTL) analysis 

In order to identify eQTLs that could explain the association signals at overlapping loci, we 

used a previously published eQTL dataset consisting of 3 754 samples from peripheral 

venous blood.7 To test for overlapping eQTLs, we first created a set of markers at each of the 

16 overlapping CPSM loci that could be assumed to be credibly causal, using the method 

defined in a previous paper8 and association P values from the migraine dataset. For the most 

significant eQTLs (p<1x10-4) that were found to any genes within a 1Mb window of each 

locus, we created a set of eQTL loci where each locus was defined as the physical region 

containing all SNPs in LD (r2>0.6) with the top eQTL SNP to a particular gene. We then 
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further refined each eQTL locus to contain only a credible set of markers for each eQTL 

effect., and finally tested for significant correlation between the z-scores in each migraine 

credible set compared to each overlapping eQTL credible set. Correlation was measured 

using Pearson’s correlation coefficient and significance assessed by a two-tailed t-test with n-

2 degrees of freedom, where n is the number of SNPs overlapping between the two credible 

sets. Significant correlation between a migraine credible set and an eQTL credible set after 

Bonferroni correction was taken as evidence of the migraine locus tagging a real eQTL. 
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