Supplementary Table 1

Table 1: Parameters for					
NMR Experiments ¹					
			Parameters ²		
			time	freq	Acq
					time
experiment	Dim	Nuc	pts	pts	(ms)
$2D^{1}H$, ^{15}N	t_1	¹⁵ N	256	512	25.6
HSQC	t_2	'Η	1024	2048	106.5
3D ¹⁵ Nedited	t_1	¹⁵ N	64	128	27.4
HNCA	t_2	^{13}C	100	256	16.6
	t_3	^{1}H	1024	2048	122.1
3D ¹⁵ Nedited	t_1	1 H	256	512	5.2
NOESY ³	t_2	¹⁵ N	84	256	5.7
	t_3	$^{1}\mathrm{H}$	1024	2048	53.2
3D HNHA	t_1	$^{1}\mathrm{H}$	128	256	10.0
	t_2	¹⁵ N	40	128	11.4
	t_3	1 H	1024	2048	122.1
3D	t_1	${}^{13}C^4$	100	256	4.4
CBCA(CO)NH	t_2	¹⁵ N	40	128	13.7
	t_3	${}^{1}\mathbf{H}$	1024	2048	106.5
3D	t_1	^{13}C	112	256	5.5
HNCACB	t_2	¹⁵ N	58	128	27.4
	t_3	^{1}H	1024	2048	61.0
3D HNCO	t_1	$^{13}C^{5}$	100	256	16.5
	t_2	¹⁵ N	64	128	25.7
	t_3	^{1}H	1024	2048	122.1
3D	t_1	^{1}H	128	512	5.2
HC(CO)NH	t_2	¹⁵ N	44	128	25.7
	t_3	${}^{1}\mathbf{H}$	1024	2048	106.5
3D	t_1	${}^{13}C^4$	110	512	5.5
C(CO)NH	t_2	¹⁵ N	64	128	25.7
	t_3	^{1}H	1024	2048	61.1
4D ¹³ C, ¹⁵ N-	t_1	$^{13}C^{6}$	36	128	13.8
edited 7	t_2	${}^{1}\mathrm{H}$	128	256	8.3
NOESY	$\bar{t_3}$	¹⁵ N	36	64	5.7
	t_4	${}^{1}\mathbf{H}$	512	1024	61.1
4D ¹³ C, ¹³ C-	t_1	${}^{13}C^{6}$	36	64	13.8
edited ⁷	t_2	${}^{13}C^{6}$	36	64	13.8
NOESY	t_3	${}^{1}\mathbf{H}$	128	256	7.3
	t_4	${}^{1}\mathbf{H}$	1024	2048	71.3
I	-				

¹ Data were collected in H₂O at 37 °C at 600.13 MHz for¹H.
² The number of points in the time domain is complex. The number of points in the frequency domain is real. The carrier frequency is 4.658 and 118.0 ppm for ¹H and ¹⁵N, respectively, unless otherwise stated.
³ The NOE mixing time was 150 ms.
⁴ The ¹³C carrier position was set at 43.78 ppm.
⁵ The ¹³C carrier position was set at 40.78 ppm.
⁷ The NOE mixing time was 130 ms.

Supplementary Figure 1

Supplementary Fig. 1. Secondary structure of S100A1 in the Ca²⁺-S100A1-RyRP12 complex. Diagram of amide exchange, HNHA J-couplings, sequential connectivities, NOE connectivities, and the secondary structure for reduced, Ca²⁺-loaded, RyRP12 bound S100A1. Stars above the sequence represent Ca^{2+} binding residues. Circles indicate relative amide hydrogen exchange rates at 37°C as determined using 2D ¹H ¹⁵N HSQC spectra. Open circles (T<10 min.) are arbitrarily referred to as fast exchanging amide protons. Residues with partially filled circles are arbitrarily referred to as medium exchanging amide protons (T<16 h). Residues with solid circles are referred to as slowly exchanging protons (T>16 h). Squares refer to ${}^{3}J$ (HN- H^{α}) coupling from a 3D HNHA experiment, where open squares represent data not obtained, partially filled squares refer to ${}^{3}J$ -coupling <6 Hz, and closed squares represent 3J coupling >6 Hz. The NOE correlations were determined from 3D ¹⁵N-edited NOESY-HSOC, 4D ¹³C, ¹⁵Nedited NOESY, and 4D ¹³C, ¹³C-edited NOESY experiments. The height of the bars indicates the strength of the NOE (strong, medium, medium-weak, weak, and very weak). NOE correlations from non-neighboring residues are indicated by lines connecting the residues. Deviations in the ${}^{13}C^{\alpha}$ and ${}^{1}H^{\alpha}$ chemical shift from those of a random coil are illustrated such that regions of contiguous upfield-shifted ${}^{13}C^{\alpha}$ chemical shifts (positive values) and downfield ${}^{1}H^{\alpha}$ chemical shifts (negative values) are indicative of helical regions. Likewise, regions of contiguous downfield-shifted ${}^{13}C^{\alpha}$ chemical shifts (negative values) and upfield-shifted ${}^{1}H^{\alpha}$ chemical shifts (positive values) are indicative of β -sheet. The secondary structure, as derived from all of the data presented here, is represented by α -helices (spirals) β -sheets (arrows) and loops (no symbol), as indicated under the appropriate residues in the sequence of S100A1.

S100A1 Binds to the Calmodulin-binding Site of Ryanodine Receptor and Modulates Skeletal Muscle Excitation-Contraction Coupling

Benjamin L. Prosser, Nathan T. Wright, Erick O. Hernãndez-Ochoa, Kristen M. Varney, Yewei Liu, Rotimi O. Olojo, Danna B. Zimmer, David J. Weber and Martin F. Schneider

J. Biol. Chem. 2008, 283:5046-5057. doi: 10.1074/jbc.M709231200 originally published online December 17, 2007

Access the most updated version of this article at doi: 10.1074/jbc.M709231200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material: http://www.jbc.org/content/suppl/2007/12/18/M709231200.DC1.html

This article cites 62 references, 20 of which can be accessed free at http://www.jbc.org/content/283/8/5046.full.html#ref-list-1