Supplementary Information

Figure S1. Novel phosphorylation of Gad8 at Thr6

(A) The product ion spectrum demonstrating the phosphorylation of Gad8 at T6 with annotated peptide sequence and pertinent ions labeled. The series of b ions including b2, b4,b4++, b5 and b6 (all with Mox characteristic neutral loss of 64 Da) confirm the peptide sequence. B2, b4, b4++, b5 confirm the phosphorylation is C terminal of L5 and b6 confirms the site of phosphorylation as T6 (B) Stress response of *gad8* mutants. (C) Gad8.3HA protein levels in *T6A* and *T6D* mutants. (D) Relative Gad8 levels in *T6A* and *T6D* mutants. (E-F) Gad8 protein stability in *T6A* and *T6D* mutants. Cycloheximide was added and Gad8 levels was followed over time.

Figure S2. Thr6 phosphorylation is not required for the response to nutrient stress.

(A) Nutrient stress of *T6A* and *T6D* and kinase dead Gad8 mutants to induce cell division. (B) Viability of *T6A* and *T6D* mutants were unaffected by nitrogen starvation.

Figure S3. Thr6 phosphorylation does not affect kinase activity.

(A) Gad8 *in vitro* kinase assay using Tor1 as substrate and phosphor-specific Tor1.T1972 antibodies is linear. (B) The *T6A* and *T6D* mutants did not affect Gad8 *in vitro* kinase activity.

Figure S4. Thr6 phosphorylation lies within a Protein Kinase C consensus site.

(A) Schematic of AGC kinases with the relative position of the conserved Gad8 Thr6 phosphorylation site. (B) Micrographs of heat stressed *T6A* and *T6D* mutants. (C) Heat stress response of *T6A*, *T6D* and PKC double mutants. (D) Overexpression of

Pck2 complements a *pck2.1* mutant. (E) Pck2 reduces Gad8.S546 phosphorylation

in a $pmk1.\Delta$ mutant. * Indicates a background band.

Table S1. Strains used.

JP3	h-	lab stock
JP350	h+	lab stock
JP543	h- psk1:ura4 ⁺ leu1.32 ura4.d18	(Bimbo et al. 2005)
		gad8::ura4+ from (Bimbo et al.
JP598	gad8::ura4 ⁺ ura4.d18	2005)
JP1411	h+ gad8.S546A	(Halova et al. 2013)
JP1545	gad8.T6A	This study
JP2102	h+ gad8.T6D	This study
JP2819	gad8.T6AS546A	This study
JP2820	gad8.T6AS546D	This study
JP2821	gad8.T6DS546D	This study
JP2822	gad8.T6DS546A	This study
JP1511	gad8.K259R	(Du et al. 2012)
JP2747	gad8.T6AK259R	This study
JP2748	gad8.T6DK259R	This study
JP2773	h- gad8.T6DK259R ura4.d18	This study
JP3125	gad8.S546A ura4.d18	This study
JP3126	gad8.T6DS546A ura4.d18	This study
JP2835	gad8.S546D	This study
JP2851	h+ gad8.S546A	This study
JP2619	psk1::ura4+ ura4.d18	(Bimbo et al. 2005)
JP438	h+ pmk1:ura4+ ura4.d18	(Bimbo et al. 2005)
JP2846	gad8T6A sin1.13myc	This study <i>sin1.13myc</i> from
		(Tatebe et al. 2010)
JP2345	gad8T6D sin1.13myc	This study
JP1992	gad8T6A-3HA:kanMX	This study
JP2172	pck1::ura4+ ura4.d18	(Bimbo et al. 2005)
JP2174	pck2::ura4+ ura4.d18	(Bimbo et al. 2005)
JP2712	gad8.T6D pck1::ura4+ ura4.d18	This study

JP2850	gad8.T6D pck2::ura4+ ura4.d18	This study
JP2623	gad8.T6A pck1::ura4+ ura4.d18	This study
JP2625	gad8.T6A pck2::ura4+ ura4.d18	This study
JP2970	sin1.13myc ura4.d18 +	This study
	pJP642: nmt42-pck2	
JP2971	sin1.13myc ura4.d18 +	sin1.13myc from
	pJP5: nmt42-empty	(Tatebe et al. 2010)
JP2201	gad8T6A ura4.d18	This study
JP2202	gad8T6D ura4.d18	This study
JP2585	gad8.T6A mcherry-lifeact	<i>mcherry-lifeact</i> from
		(Huang et al. 2012)
JP2587	gad8.T6D mcherry-lifeact	This study
JP2640	mcherry-lifeact	This study

- Bimbo A, Jia Y, Poh SL, Karuturi RK, den Elzen N, Peng X, Zheng L, O'Connell M, Liu ET, Balasubramanian MK et al. 2005. Systematic deletion analysis of fission yeast protein kinases. *Eukaryotic cell* **4**: 799-813.
- Du W, Hálová L, Kirkham S, Atkin J, Petersen J. 2012. TORC2 and the AGC kinase Gad8 regulate phosphorylation of the ribosomal protein S6 in fission yeast. *Biology Open* **1**: 884-888.
- Halova L, Du W, Kirkham S, Smith DL, Petersen J. 2013. Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition. *The Journal of cell biology* **203**: 595-604.
- Huang, J., Huang, Y., Yu, H., Subramanian, D., Padmanabhan, A., Thadani, R., Tao, Y., Tang, X., Wedlich-Soldner, R., and Balasubramanian, M.K. (2012). Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. The *Journal of cell biology* 199, 831-847.
- Tatebe H, Morigasaki S, Murayama S, Zeng CT, Shiozaki K. 2010. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. *Curr Biol* **20**: 1975-1982.

Gad8 kinase assay P-Tor1. T1972 Tor1.GST * Gad8 input 8x 4x 2x 1x

В

Α

Supplementary Figure 4

