

Figure S1.

The stress predominantly affects the first phase of heart regeneration.

(A-K) Heart sections at 60 dpci after AFOG staining were analyzed in the same manner as described in Fig. 2. After cryoinjury, zebrafish were subjected to daily stress either during the whole period of 60 days (crowding: C-E) or only during the first 30 days (crowding: F-H; heat shock: I-L). (L-P) Heart sections at 30 dpci after AFOG staining. In this case, zebrafish were exposed to daily crowding either during the first 2 weeks (L-N) or during the final 2 weeks (O, P). (L-N) The cryoinjured hearts of fish that were stressed for the first 2 weeks followed by 2 weeks of recovery at normal conditions display impaired regeneration. 78% of the animals displayed a partial or complete blockage of heart regeneration. (O, P) The cryoinjured hearts of fish that were kept at normal conditions for the first 2 weeks and then exposed to stress for the final 2 weeks, regenerated the hearts. The analysis of the regenerative process in the different groups revealed that daily exposure to stress has a stronger impact on the initial phase of heart regeneration. (Q) Analysis of the body weights before cryoinjuries and at 30 dpci revealed no significant weight changes during this period in control and stressed animals. (R) Glucose measurements revealed higher levels of blood glucose in the control animals as compared to stressed fish at 30 dpci. N≥8. No difference was observed at 7 dpci. Data are represented as mean \pm SEM. **P < 0.01; N=5. Scale bar (A) = 100 µm.

С Cellular proliferation in the whole heart after 10 days 4

Weight of the animals after 10 days

D

Figure S2.

Rapid cardiac growth is affected by daily acute stress exposure.

(A, B) Sections of hearts of control and stressed zebrafish 10 days after the transfer to low density conditions (3 fish / 10 liters) stained with antibodies against Tropomyosin (TPM, red), MCM5, a G1/S-phase marker (green) and with DAPI (blue). Juvenile zebrafish (2 months of age) were exposed 2 x per day to crowding (10 fish/ 250ml during 1h) during 10 days to investigate the effect of stress on cardiac homeostatic growth. (A', B') Higher magnifications of the framed area shown in (A, B). A higher number of proliferating cardiac cells (CMs and non CMs) were identified in the control fish when compared to the stressed animals (arrows). (C) Bar graphs show the percentage of proliferating cells (MCM5-positive DAPI-positive / DAPI-positive in the tropomyosin-labeled myocardium) in the animals maintained at high density (5 fish per liter) and in control and stressed animals transferred to low density conditions (3 fish in 10 liters). Ventricles exposed to daily stress (10 fish/ 250 ml, 2 x 1h/day) showed a significantly lower proportion of proliferating cardiac cells than control hearts. (D) Bar graphs show the average weight of the animals at day 0, after 10 days in high density conditions (3 fish in 1 liter), after 10 days in low density conditions (3 fish in 10 liters) and after 10 days in low density conditions with daily exposure to crowding (10 fish/ 250 ml, 2 x 1h/day). Data are represented as mean ± SEM. *P < 0.05, **P < 0.01 ***P < 0.001, ****P < 0.0001; N≥4.

Figure S3.

The concomitant administration of dexamethasone and adrenaline after cryoinjury mimics the effect of stress on heart regeneration.

(A, B) Representative images of cryoinjured hearts at 30 dpci labeled with phalloidin (red, F-actin), dapi (blue) and antibody against L-Plastin (green, leukocytes). (A', B') Higher magnification of the frame areas shown in (A, B). (C) Quantification of L-Plastin-positive area normalized to the total area of the ventricles revealed no significant effect of daily acute dexamethasone (2 mg/l) treatment on cardiac inflammation. N > 4. (D-M) Sections of hearts at 30 days post cryoinjury (dpci) after Aninlin blue acid Fuchsin Orange-G (AFOG). (F-M) The acute administration (1 hour per day) of dexamethasone (Dex, 2 mg/l) alone (H-J) or concomitantly with adrenaline (adr, 1 mg/l) (K-M) resulted in cardiac regenerative impairment in 50% and 62.5% of the fish, respectively. In contrast, animals treated with adrenaline alone during 1 hour per day displayed similar regenerative scores as the control (D-G). (N-P) Heart sections of *cmlc2::dsRed2-Nuc* transgenic zebrafish at 7 dpci immunostained against MCM5 (green). (N'-P') Higher magnification of the framed areas shown in (N-P). Proliferating CMs could be identified in all groups by the overlap between MCM5 and DsRed (arrowheads). In contrast to adrenaline (1 mg/l, 1h /day), the treatment with glucocorticoid (hydrocortisone, 1 mg/l) lead to a reduction in CM proliferation at 7 dpci. Cryoinjured parts are encircled with a dashed line. Scale bar (A, D, N) = 100 μ m.

Figure S4.

Propranolol and fluoxetine hydrochloride administration have a beneficial effect on cardiac regeneration in the stressed animals.

(A-L) Heart sections at 30 dpci after AFOG staining. (E-L) The treatment of the stressed animals with propranolol (1 mg/l, 1 h/day, 3 days pretreatment, H, I) and fluoxetine hydrochloride (100 μ g /l, continuous, 2 weeks pretreatment, J-L) had a significant rescue effect on the stress-induced regenerative impairment whereas the administration of diazepam (1 mg/l, continuous, 3 days pretreatment, E-G) did not rescue the negative effect of stress on heart regeneration. Scale bar (A) = 100 μ m.

Figure S5.

Modulation of the stress response: effect on cardiac regeneration.

In zebrafish, exposure to different stressors activates two main axes: (1) the hypothalamus-pituitary interrenal (HPI) axis (green) and (2) the sympathetic-chromaffin cell axis (purple).

The treatment of the stressed animals after cryoinjury with fluoxetine hydrochloride (serotonin re-uptake inhibitor) and propranolol (non-selective β -adrenoreceptor antagonist) had a significant rescue effect on the stress-induced regenerative impairment. The administration of diazepam (GABAa receptor enhancer) did not show any beneficial effect on scar resorption. The intermittent administration of RU486 (glucocorticoid antagonist) did not rescue cardiomyocyte proliferation in the stressed animals and the prolonged treatment with this drug was toxic and resulted in a high lethality.

Figure S6.

Epi/endocardium activation, Tenascin C expression and cellular apoptosis are not affected by daily exposure to stress.

(A-D) Sections of *cmlc2::dsRed2-Nuc* hearts of control and stressed zebrafish at 14 dpci immunostained against the retinoic acid synthetizing enzyme (Raldh2, green), which is a marker of the activated epi-endocardium (A, B) or against Tenascin C (TNC, green), which is an ECM protein involved in tissue remodeling (C, D). (**A'-D'**) Higher magnifications of the framed areas shown in (A-D). Expression of the Raldh2 enzyme and Tenascin C could be detected at the injured site and in the epicardium both in control (A', C') and stressed (B', D') fish. This indicates no major impact of daily stress on epicardial/endocardial activation or on Tenascin C regulation. Scale bar (D, D') = 100 μ m.

(E, F) Sections of *cmlc2::dsRed2-Nuc* hearts at 7 dpci after TUNEL assay and DAPI staining. (E', F') Apoptotic cells were detected by signal overlap between TUNEL and DAPI in the cryoinjured parts but also in the rest of the ventricle. (G) Quantification of TUNEL and DAPI positive cells allowed to estimate the level of cellular apoptosis in the ventricle of the control and crowded zebrafish. No significant difference in apoptosis was observed between control and stressed fish at 7 dpci. Cryoinjured parts are encircled with a dashed line. Data are represented as mean \pm SEM. Scale bar (F, F ') = 100 µm.

Figure S7.

Experimental setup for the RNA-seq1 & 2 experiments and principal components analysis of both experiments.

(A) Experimental setup for the RNA sequencing 1 performed at 14 dpci with the RNA extracted from the cryoinjured parts of the stressed and control hearts. (**B**, **C**) The use of *cmlc2::EGFP-PM* transgenic zebrafish, expressing GFP in the plasma membrane of CMs, enabled to identify and isolate the cryoinjured parts of the ventricle used for the RNA-sequencing experiment (15 cryoinjured parts were pulled together for each group in order to get sufficient amount of RNA). (**D**) Experimental setup for the RNA sequencing 2 performed at 14 dpci with the RNA extracted from the wholes ventricles of the stressed and control hearts. (**E**) Principal component analysis plot performed with RNA-seq1 and RNA-seq2. The Principal Compenent Analysis (PCA) is a classical method of statistical analysis. By transforming the set of observations into linearly uncorrelated variables called "principal component". By definition the PCs are ordered by the variance they can explain in the data. PC1 explains the largest variance, then PC2, then PC3 etc. In our experiment, PC1 allows discriminating the two independant RNAseq experiments, and PC2 discriminates the stress and the control samples in both RNAseq experiments. Scale bar (B)= 100 µm.

Figure S8.

ctrl

Inhibition of IGF-1 receptor impairs heart regeneration.

lgf-1r inh.

(A-F) Heart sections at 30 dpci after AFOG staining. (A-C) In the control group treated with 0.05% DMSO, 66% of the zebrafish completely regenerated the heart at 30 dpci. (D-F) In the group treated with NVP-ADW742 (5 μ M), a specific inhibitor of the lgf1r kinase activity, 62.5% of the fish showed impaired cardiac regeneration at 30 dpci. (G) Histograms represent the percentage of zebrafish hearts with complete (white), partial (gray) or blocked (black) regeneration at distinct experimental settings (regenerative scores). Scale bar (A) = 100 μ m.

Name	# of Entities	Expanded # of Entities	# of Measured Entities	Median change	p-value Hit type)
Proteins Involved in Pathogenesis of Melanoma	245	262	180	1.121233899	5.5849E-06 Disease	e Collections
Built Pathway_IGFBP1b_downstream cell processes	178	763	238	1.086427761	2.7121E-05 Private	pathways
Proteins Involved in Pathogenesis of Glioma	304	340	207	1.083054452	2.8003E-05 Disease	Collections
Defective Clearance of Apoptotic Keratinocytes in Systemic Lupus Erythematos	79	245	89	1.071944531	2.9092E-05 Disease	e Collections
BMP7-ACVR2 Expression Targets	27	29	21	1.610822919	0.00026135 Express	sion Targets Pathways
TGFB1-ACVRL1 Expression Targets	221	233	138	1.175402723	0.00028927 Express	sion Targets Pathways
EGF/CTNN Expression Targets	143	156	96	1.279815128	0.00032076 Express	sion Targets Pathways
B Cell Activation	62	. 841	506	1.181790244	0.00032227 Cell Sig	naling
TLR4/NF-kB/IRF Expression Targets	70	76	37	1.07553905	0.00034869 Express	sion Targets Pathways
Pathway Genes Imp	954	954	628	1.033202234	0.00037041 Private	pathways
B-cell Chronic Lymphocytic Leukemia Overview	122	430	273	1.258365961	0.0003856 Disease	Collections
Extracellular Matrix Turnover	36	166	76	1.228851937	0.00039486 Cell Pro	cess Pathwavs
Melanoma Overview	176	627	429	1,131958925	0.00043896 Disease	Collections
EphrinR -> actin signaling	15	216	141	-1.020568772	0.00051062 Recepto	or Signaling
Dystrophin Glycoprotein Complex Signaling in Duchenne Muscular Dystrophy	67	792	490	1.151354255	0.00054743 Disease	Collections
OXIDATIVE (ROS) Dystrophin Glycoprotein Complex Signaling in Duchenne Mu	67	792	490	1.151354255	0.00054743 Private	pathways
Proteins Involved in Pathogenesis of Glioblastoma	188	210	138	-1 044766759	0 00055643 Disease	Collections
Hodgkin Lymphoma Overview	146	614	285	1 254934272	0.00062251 Disease	Collections
TLR4 -> IRF signaling	14	. 14	10	1 837768696	0.0007392 Recepto	or Signaling
TGEB1-TGEBR1 Expression Targets	89		47	1 269441599	0.00076762 Express	sion Targets Pathways
Proteins Involved in Pathogenesis of Cataract	95	95	53	1 106356331	0.00099064 Disease	Collections
Role of Hexosamine Pathway in Diabetic Microangionathy	26	145	71	1 1450458	0.0009942 Disease	Collections
T Cell Activation	80	948	471	1 033202234	0.00000042 Discust	naling
PDGE/STAT Expression Targets	80	80	57	1 164725658	0.00102698 Express	sion Targets Pathways
Proposed Mechanisms of Antienilentic Effects of a Ketogenic Diet	56	365	210	1 285492956	0.00108017 Disease	
Atlas of Signaling	381	6035	3424	1 083054452	0.00113812 Cell Sig	naling
	145	171	109	-1 019580018	0.00120622 Private	nathwave
	145	171	109	-1.019580018	0.00120622 Finale	sion Targets Pathways
Notch Insulin/CEBPA/CTNNB/FOXA/FOXO Expression Targets	140	171	105	-1.019580018	0.00129622 Express	nathways
Cell Cycle Regulation	136	2176	1436	1 13136165	0.00135125 Cell Sig	nalina
Common Non-genomic Effects of Thyraid Hormones	60	338	1950	-1 020568772	0.00130120 Och Olg	
BMP2 Activates W/NT Signaling in Pulmonany Artery Smooth Muscle Cells	26	253	163	1 028555610	0.00154104 Disease	
TGER1-TGERP2 Expression Targets	116	125	77	1 205082884	0.00157163 Express	con Targete Dathwave
Actomyosin-Based Movement	25	85	31	1 305557659	0.00157105 Express	son rargets ratiways
Actin Cytoskalatan Bagulation	51	546	360	1 030042621	0.00170848 Cell Sig	naling
Ca2+ Overload in Duchenne Muscular Dystronby	50	256	150	1.030342021	0.00173040 Cell Sig	
Pole of HMCR1 and II 1B in Neuroinflammation in Enilensy	25	200	100	1 115450282	0.00186536 Disease	
TNE/NE-kB Exprossion Targets	127	135	69	1 164725658	0.00100300 Disease	con Targete Dathwave
INHBA-ACVR2/ACVR1 Expression Targets	25	27	20	1 610822010	0.00102102 Express	sion Targets Pathways
	71	371	203	1.00200064	0.00104078 Immuno	logical Pathways
Onset of Atonic Dermatitis	72	343	203	-1 00209904	0.00194970 Inimune 0.00194978 Disease	Collections
II 1B Expression Targets	160	105	109	1 0215013	0.00194970 Disease	sion Targets Pathways
Vascularization in Hangtocollular Caroinoma	26	190	52	1.0213013	0.00190439 Express	Collections
Secondary Cliphlaetoma	66	343	237	1 258365061	0.00203210 Disease	Collections
	46	109	201	1 999026954	0.00204323 Disease	
	40	221	10	1.000030034	0.00217801 Wetabo	nic Falliways
Lentin/STAT Expression Targets	145	201	100	1 10/807212	0.00222991 Express	sion Targets Pathways
ACT/CEEP Expression Targets	90	107	110	1.13400/312	0.00239132 Express	bion Targete Pathways
Vitamin A (roting) metabolism and visual avela		193	110	1.09441/435	0.00244301 EXPress	lio Dothwovo
Sister Chromotid Cohosian	93	100	19	1.220004/1		no FailiWays
Sister Unromatio Conesion	2/	1/4	113	1.31/461315	0.00276692 Cell Pro	cess Pathways

Table S1.

Gene set enrichment analysis for the the fused RNA seq experiment (RNA-seq1&2) to highlight changes in gene expression between control and stressed zebrafish hearts. The table shows the 50 most significant **pathway** gene sets for the fused RNA-seq experiment: RNA-seq1 & RNA-seq2. The analysis was performed with Pathway Studio.

Name	# of Entities	Expanded # of Entities	# of Measured Entities	Median chan	p-value Hit type
SRP-dependent cotranslational protein targeting to membrane	108	108	74	1.77234506	3.0145E-10 biological process
viral transcription	82	82	56	1.84158913	4.4373E-10 biological process
translational termination	89	89	62	1.7790759	1.112E-08 biological process
viral life cycle	93	93	63	1.77234506	4.2407E-08 biological process
translational elongation	149	149	74	1.76277199	3.1223E-07 biological process
cell adhesion	658	658	342	1.03973094	1.4525E-06 biological process
response to virus	145	145	68	1.37681504	1.67E-06 biological process
cytosolic large ribosomal subunit	68	68	33	1.7790759	1.7438E-06 cellular component
actin binding	395	395	223	-1.0781643	1.789E-06 molecular function
Z disc	124	124	71	1.0368129	4.4501E-06 cellular component
extracellular region	2319	2319	793	1.10562778	1.0497E-05 cellular component
cytosol	2752	2752	1886	1.1016447	1.3491E-05 cellular component
homophilic cell adhesion	160	160	47	-1.1749899	1.451E-05 biological process
nuclear-transcribed mRNA catabolic process, nonsense-medi	122	122	86	1.64589637	1.7059E-05 biological process
extracellular matrix	250	250	154	1.1450458	4.0576E-05 cellular component
cvtosolic small ribosomal subunit	59	59	28	1.78686236	5.2213E-05 cellular component
proteinaceous extracellular matrix	318	318	167	1,12703243	8.9256E-05 cellular component
DNA strand elongation involved in DNA replication	31	31	21	1.87578021	0.00011666 biological process
cytokine binding	22	22	- 11	1.66175581	0.00011674 molecular function
structural constituent of muscle	52	52	28	-1.22291476	0.00013793 molecular function
innate immune response	669	669	341	1.09441743	0.0001406 biological process
structural constituent of ribosome	416	416	112	1.5427905	0.00014143 molecular function
cellular response to exogenous dsRNA	14	14	6	2.831489	0.00014868 biological process
mvosin complex	59	59	35	-1.37424361	0.00019363 cellular component
heparin binding	166	166	75	1.10667467	0.0001945 molecular function
collagen binding	61	61	42	1.36796593	0.00020382 molecular function
inositol phosphate-mediated signaling	12	12	6	-2.02442083	0.00022145 biological process
transmembrane signaling receptor activity	178	178	71	-1.02278562	0.00022579 molecular function
muscle filament sliding	39	39	24	1.15324394	0.00022622 biological process
positive regulation of neutrophil chemotaxis	19	19	- 11	2.51787823	0.00022765 biological process
translational initiation	149	149	100	1.58878194	0.00024611 biological process
actin filament binding	97	97	70	-1.08544637	0.00025982 molecular function
response to vitamin D	27	27	19	-1.46988038	0.00031118 biological process
protein homodimerization activity	765	765	434	1.03320223	0.00031824 molecular function
RNA metabolic process	250	250	195	1,49149742	0.00042772 biological process
cellular response to mechanical stimulus	86	86	52	-1.04631187	0.00050118 biological process
mRNA metabolic process	227	227	180	1.52096928	0.0005202 biological process
mitotic cell cvcle	394	394	300	1.27847668	0.00060125 biological process
cardiac muscle cell action potential involved in contraction	10	10	7	-1.96299321	0.00063621 biological process
positive regulation of potassium ion transport	16	16	9	-1.66351809	0.00075449 biological process
myoblast migration	5	5	5	2,45266796	0.00081209 biological process
superoxide anion generation	15	15	8	3,21042632	0.00085169 biological process
immune response	449	450	119	1,15294089	0.00099846 biological process
regulation of stress fiber assembly	7	7	6	-1.99257912	0.00100537 biological process
cellular amino acid metabolic process	50	50	32	1.12440149	0.00108476 biological process
viral process	320	320	243	1.42239843	0.00110895 biological process
cell periphery	48	48	28	1.09441743	0.00116032 cellular component
regulation of small GTPase mediated signal transduction	174	174	108	-1.11122585	0.0012402 biological process
small ribosomal subunit	48	48	18	1.72612426	0.00128253 cellular component
energy reserve metabolic process	103	103	68	-1.11351284	0.00129081 biological_process

 Table S2.
 Gene set enrichment analysis for the fused RNA seq experiment (RNA-seq1&2) to highlight changes in gene expression between control and stressed zebrafish hearts. The table shows the 50 most significant GO-term gene sets for the fused RNA-seq experiment: RNA-seq1 & RNA-seq2. The analysis was performed with Pathway Studio.

genelD	log2FC_fused	padj_fused	type of RNA
IFITM1	3.742286001	1.14E-30	
ENSDARG0000084533	3.881034115	1.21E-28	miRNA
ENSDARG0000081938	8.047716049	1.79E-24	Mt-tRNA
SLC25A4	-2.760180063	1.18E-21	
ENSDARG0000088865	3.443302383	1.18E-21	miRNA
LGALS3BP	3.113514297	1.69E-21	
CORO2A	-5.652379587	3.78E-21	
ENSDARG0000088976	3.582835203	3.15E-20	miRNA
ENSDARG0000086686	3.47104141	4.73E-20	miRNA
FHL2	2.929914201	1.73E-19	
ENSDARG0000089384	4.183491967	1.96E-19	miRNA
ENSDARG00000070212	3.256322883	1.13E-18	
ENSDARG00000090280	3.435020079	4.47E-18	miRNA
ENSDARG0000091738	3.373336585	6.97E-18	mirna
PARP6	-2.569819142	1.76E-17	
MYBPH	-2.5/24530//	8.25E-17	
ENSDARG00000093902	7.612314957	3.8/E-16	pseudogene
	2.707511492	1.34E-15	
	-4.8/3/53905	1.85E-15	
ENSDARG00000087783	3.003121003	1.00E-10	
	3.429343710	1.00E-10	MIRNA
	2.041037412	3.49E-14	
	-2.924904090	3.70E-14	
	7 00582730	2.015 13	nseudogene
	2 072020154	2.012-13	pseudogene
	2 873602128	3.70E-13	miDNIA
ENSDARG00000086606	7 03080247	3.70L-13	nseudogene
ENSDARG00000086256	-2 7337000247	3.70L-13	protein coding
CRIP1	2 06748148	4.84E-13	protein_coung
GNB3	-5 560717107	5.66E-13	
ENSDARG0000086396	2 928302686	8 23E-13	miRNA
SEC61G	2 213266624	8 24E-13	
ENSDARG0000086085	3 124629975	9 25E-13	miRNA
IFI27I 1	2 450376839	1.06E-12	
ENSDARG00000088436	2 770051212	1 22F-12	protein codina
ENSDARG0000078859	4 727957055	1 46F-12	protein_coding
MYRFL	-2.53518149	1.89E-12	protoni_codanig
ENSDARG0000087953	3.056798055	1.97E-12	miRNA
ENSDARG00000089382	2.864534502	3.65E-12	protein coding
PDZRN3	-2.361487556	5.04E-12	
SLC16A1	-2.31344781	6.27E-12	
BMP10	-2.566374785	7.56E-12	
ENSDARG00000096403	2.7441639	7.94E-12	lincRNA
ENSDARG00000070873	2.558192575	1.05E-11	protein_coding
ENSDARG00000090733	2.774640053	1.83E-11	miRNA
ENSDARG0000087337	2.801632112	1.98E-11	miRNA
HEPACAM2	6.641683192	1.98E-11	
ENSDARG00000017246	-2.401867587	3.29E-11	protein_coding
ENSDARG00000090146	2.984329301	4.74E-11	miRNA
RBP4	2.002717065	6.27E-11	
ENSDARG00000090175	2.882947206	6.63E-11	miRNA
ENSDARG0000082789	2.100222947	8.53E-11	Mt_tRNA
ENSDARG0000086192	3.098469469	1.09E-10	miRNA
KCNMB2	-2.581176089	1.79E-10	
ENSDARG00000015815	-1.809270076	2.43E-10	protein_coding
NR4A1	-2.146381259	3.12E-10	
EPHB3	-2.249748285	3.19E-10	
SULT2B1	2.547289475	3.56E-10	
ENSDARG00000058348	2.976849528	3.92E-10	protein_coding
ENSDARG0000088311	2.795463059	4.35E-10	miRNA
EIV4	2.433975283	5.45E-10	
ENSDARG0000088838	2.703044112	5.80E-10	MIRNA
ENSDARG0000085168	6.285124238	6.35E-10	MIKNA
ENSDARG0000097100	-2.044045148	6.70E-10	protein_coding
ENSDARG0000087747	6.227650516	1.08E-09	pseudogene
ENSDARG0000088582	6.225175014	1.09E-09	pseudogene
LGR4	-2.076095077	1.14E-09	

 Table S3.
 Table showing the 50 most significant DE non-coding

 RNAs(miRNAs are highlighted in red) for the fused RNA-seq experiment: RNA-seq1 & RNA-seq2.
 The analysis was performed with Pathway Studio.