
SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Whole Exome Sequence (WES) Analysis. Single nucleotide variant (SNV), small 

insertion-deletion (INDEL) and copy number variation (CNV) calling were performed as 

in our prior study (Shi et al., 2014). Tumor purities and ploidies, as listed in 

Supplementary Table S1E, were calculated based on the purity and ploidy calls of 

Sequenza (Favero et al., 2015) on the WES data using its default parameters. When 

there were multiple possible (purity, ploidy) values, we manually chose the pair that 

minimized the ploidy variation across the different tumors from the same patient. 

 

RNASeq Analysis. To ensure robustness in the DGE calls, we used three programs: 

Cuffdiff (Trapnell et al., 2013), GFOLD (Feng et al., 2012) and RSEM (Li and Dewey, 

2011) + EBSeq (Leng et al., 2013). Using Cuffdiff, the paired-end reads were mapped to 

the UCSC hg19 reference genome using Tophat2 (Kim et al., 2011). DGE was called by 

with the option "--frag-bias-correct" and "--multi-read-correct" to improve sensitivity 

(Roberts et al., 2011). Each sample was run on two different sequencing lanes serving 

as replicates for computing p-values of differential gene expression (DGE). When there 

was no lane replicates (for samples Pt #18 baseline, DD-DP and Pt #19 DD-DP), the p-

value of the differential expression was called by the blind mode. Using GFOLD, we 

supplied the Tophat2 computed BAM alignment files of each lane and computed the 

adjusted fold change of each genes in the DP or DD-DP samples compared to their 

patient-matched baseline samples. For a few selected cases where there were no 

replicates (as noted above), the p-value of an observed fold change was estimated 



using a null distribution list of GFOLD fold change values computed from technical 

replicates of an in-house cell line RNASeq data set. Using RSEM+EBSeq, we first 

quantified the expression levels in each sample by supplying the unmapped FASTQ 

files to RSEMʼs rsem-calculate-expression function. Then the expected count output by 

the previous step was passed to EBSeq using RSEMʼs rsem-run-ebseq function. DGE 

call for all three programs was defined as a two-fold increase or decrease in the 

expression of a gene with a FDR adjusted q-value less than or equal to 0.05 (|log2 FC| ≥ 

1 with q-value ≤ 0.05).  A gene was defined to be differentially expressed when two of 

the three programs called the gene to be differentially expressed in the same direction. 

The microarray data of patient #10 was analyzed using the Affymetrix HuGene 2.1 

microarray using the Oligo R package (Carvalho and Irizarry, 2010). Microarray RNA 

expression in the validation data set (Illumina HumanHT-12 V4.0 expression beadchip) 

was processed by normalization using the normaliseIllumina function in the beadarray R 

package. DGE for microarray-based data between acquired resistant and baseline 

melanomas was defined by a 1.5-fold up- or down-expression in the acquired BRAFi 

resistant tumors as compared to its respective baseline. When analyzing immune gene 

up- and down-expression from RNASeq, we used a 1.5-fold cutoff as the immune 

compartment was expected to be smaller than the tumor cell compartment. For analysis 

of the microarray data set, we relaxed the 1.5-fold cutoff to 1.25-fold for immune gene 

expression analysis. 

 



In addition to DGE, we also tabulated the normalized gene expression levels of each 

baseline and DP/DD-DP sample. The normalized expression level of genes was 

expressed in FPKM values as generated by the program Cuffnorm. We applied the 

options "--frag-bias-correct", "--multi-read-correct"  and "--compatible-hits-norm" in the 

Cuffnorm run to ensure that both Cuffdiff and Cuffnorm applied the same adjustments 

and denominator for FPKM computation. Expressed SNVs or INDELs were defined as 

those found in genes that had (Cuffnorm) FPKM value ≥ 0.1 in the DP or DD-DP 

samples. When the SNV/INDEL was expected to be a loss-of-function (LOF) event, 

such as nonsense, frameshift and splice site mutations (expected to result in a 

truncated and, potentially, degraded mRNA), the expression cutoff of FPKM ≥ 0.1 was 

applied on the baseline expression of the gene to ensure that the gene was expressed 

prior to the LOF event. CNV-related DGE events were defined as concurrent copy 

number gain (called by both ExomeCNV and ExomeDepth) and mRNA up-expression 

(log2 FC ≥ 1 with q-value ≤ 0.05) or copy number loss and mRNA down-expression (log2 

FC ≤ -1, q-value ≤ 0.05).  

 

We curated CD8 T-cell exhaustion gene lists (Wherry, 2011) to minimize those likely to 

be expressed by melanoma cells by excluding genes whose maximum log2 FPKM was 

≥ 1 in our in-house melanoma cell line-derived RNAseq database (n=26 cell lines, data 

not shown). This resulted in the inclusion of surface receptors PDCD1 (PD-1). LAG3, 

HAVCR2 (Tim-3), CD160, and CD244 as well as the transcription factors EOMES, 

PRDM1 (Blimp-1) and TBX21 (T-bet). We also included FOXP3 (a regulatory T-cell 



transcription factor marker gene) to assess the ratio of FOXP3+ CD4 regulatory T-cells 

to CD8 T-cells. We excluded CTLA4 and NFATC1 (a T-cell exhaustion transcription 

factor gene like EOMES) since they were expressed in some of our melanoma cell 

lines. 

 

Gene Set Enrichment Analysis. As there were no available gene-set enrichment 

analysis specifically catered to patient-matched, paired RNASeq data sets, we devised 

an algorithm to estimate the enrichment of a gene set based on the fold change of each 

gene in the set. Specifically, for each sample, we rank ordered the genes based on their 

fold change in expression from baseline to disease progression. Gene sets with many 

high-ranked up-expressed genes would have a smaller rank-sum while sets with 

negative enrichment would have a larger rank-sum. We tested for significance of the 

rank-sum by using the Wilcoxon rank-sum test and set a p-value cutoff ≤ 0.05. We 

additionally required that the median of up/down-expression across all genes in the 

gene set to be at least 10% (i.e., at least half of the samples have up/down-expression 

larger than or equal to 10%). This analysis was performed using the C6, C7, C2 CGP 

gene sets from the Molecular Signature Database of the Broad Institute. Additionally, we 

applied this enrichment analysis on our TCGA Melanoma data set-derived gene 

signatures for c-MET, LEF1 and on the DENDRITIC CELL MARKERS signature.  

 

For single sample gene set enrichment calculations, we used the GSVA program 

(Hanzelmann et al., 2013) to derive the absolute enrichment scores (e.g for the c-MET 



gene signatures in Figure 2B). RNASeq read counts were computed using HTSEQ-

COUNT program and were converted to log2 CPM values using EdgeR (McCarthy et al., 

2012) as input for GSVA (run in RNAseq mode). The GSVA scores on the validation 

dataset were computed based on the RMA normalized expression values as input to the 

GSVA program run in the microarray mode. GO enrichments analysis was done using 

the online functional annotation tools DAVID (Huang da et al., 2009b). GO term 

enrichments were selected from the GO biological process terms in DAVIDʼs Fat 

database (Huang da et al., 2009a). 

 

Expression-correlated CpG Cluster Analysis. To identify the differentially methylated 

CpG sites, we analyze the Illumina 450K Methylation array output data using R-package 

minfi (Aryee et al., 2014). Raw image IDAT files were loaded into the R statistical 

computing environment using minfi, and the data was normalized using the SWAN 

function. This output a matrix of methylation indices (β), which were continuous values 

between 0 and 1 representing the ratio/fraction of the intensity of the methylated-probe 

signal to the total signal intensity for each probed CpG site.  For each site, the 

methylation change was measured by the percent methylation difference (Δβ) from 

paired baseline to DP/DD-DP samples. Minfi function dmpFinder was then applied to 

calculate the p-value of the logit transformed differential methylation. The p-values were 

corrected for multiple hypothesis testing with false discovery rates (FDR) q-values. We 

then used a cutoff of q-value ≤ 0.05 and absolute percent methylation change |Δβ| ≥ 

10% to define differential methylation. 



 

To identify CpG clusters with multiple consecutive CpG methylation sites co-regulating 

their target gene expression (Sofer et al., 2013), we defined a threshold of 3000 base 

pairs for two CpG sites to be considered in the same CpG cluster. Specifically, we 

computed the CpG clusters by the following steps: 

1) For each gene G, we started with the CpG site Ci and calculated the Pearsonʼs 

correlation coefficient (ri) between the percent methylation change βi of Ci and the 

Gʼs expression log2 fold change EG. We first excluded genes and CpG sites 

which were altered significantly (q ≤ 0.05) in less than 25% of the DP/DD-DP 

samples. These genes or CpG sites would be dominated by minor changes 

which may not produce meaningful correlation values. We also excluded genes 

whose expressions altered significantly (q ≤ 0.05) only in less than 25% of the 

DP/DD-DP samples for the same reason. We set the value of percent 

methylation change βi and expression change EG to be zero when the q value 

was > 0.05. Pearson correlation coefficient was computed only on samples with 

non-zero values on either βi or EG, and the number of such samples had to be at 

least half of the total samples. 

2) If there existed an adjacent site Cj within 3000 base pairs downstream of Ci, we 

calculated the median of the percent methylation changes of Ci and Cj across the 

samples. This combined percent methylation change was denoted as βi+j and we 

computed the correlation ri+j between βi+j and EG.  



3) If |ri+j| > |ri|, we repeated step 2 to test if combining the next adjacent site 

downstream of Cj would improve the correlation further. 

4) Otherwise, we defined the current best combination starting from Ci as one CpG 

cluster and repeated step 1 starting from the next CpG site Cj 

 

We defined the correlation score of each CpG cluster to be its Pearson correlation 

coefficient values. For a gene with multiple CpG clusters, the p-values of the correlation 

score computed for each CpG cluster were corrected for multiple hypothesis testing with 

false discovery rates (FDR) q-values across all tested CpG clusters on the gene G. CpG 

clusters with q-value ≤ 0.1 were defined as the (expression) correlated CpG clusters of 

the gene. When a correlated CpG cluster was a subset of another (larger) CpG cluster, 

we only retained the one with a better correlation score. When there was a tie in the 

correlation scores, the smaller cluster was retained.  

After identifying the correlated CpG clusters of each gene using overall correlation tests 

across all DP/DD-DP samples, we assessed their association with DGE events in each 

resistant melanoma sample. For each sample, we selected CpG clusters with significant 

differential methylation (q-value ≤ 0.05, |Δβ| ≥ 10%) and significant DGE (q-value ≤  

0.05, |log2 FC| ≥ 1). For each of the selected CpG clusters, we assessed whether the 

direction of the changes of the methylation and RNA expression was concordant with 

the overall correlation between the CpG cluster and gene expression across all samples 

(i.e., changes of expression and methylation going in opposite directions when the 

correlation was negative or changes in the same direction with positive correlation). If 



this were true, we nominated the DGE event to be potentially driven by the differential 

methylation event of the correlated CpG cluster.  

 

GOF and LOF Cancer Gene Events. A list of 855 cancer related genes was compiled 

in Supplementary Table S1B along with the publication sources of the genes. We 

defined RNA up-expression (driven by CNV, methylation or other unknown factor) to be 

a GOF event. SNV and INDEL mutations that have been shown to be activating 

oncogenes also fell in this category. On the other side, RNA down-expressions, 

nonsense, frameshift, splice site mutations were defined as LOF events along with 

missense SNVs and in-frame INDELs that have been shown to cause LOF of tumor 

suppressor genes. Uncharacterized SNV and INDEL events were considered for 

calculation in both GOF and LOF lists. Alternative splicing of BRAF was specifically 

detected as per our previous studies (Shi et al., 2014; Shi et al., 2012) and was 

annotated as a GOF event. 

  

Analysis of the TCGA Melanoma Data. We analyzed The Cancer Genome Atlas 

(TCGA) Skin Cutaneous Melanoma RNASeq dataset (http://cancergenome.nih.gov/, 

download date Nov 20th, 2013). For RNA expression analysis, we used the level 3 gene 

based normalized expression data. To generate c-MET and LEF1 UP and DN 

signatures, we collected genes that are up- or down-expressed in melanoma samples in 

the top and bottom quartiles of the expression level of the reference gene (the gene we 

are interested to derive signature of). Specifically, we chose all genes Y which were  



differentially expressed between the samples in the top and bottom quartiles of 

reference gene X using the two-sided Wilcoxon rank-sum test on the normalized 

expression values of Y (log2). To reduce the number of hypothesis testing, we only 

tested genes Y whose median expressions in the two quartiles differed by at least four 

fold. We corrected for multiple hypothesis using FDR-adjusted q-values and reported 

the genes Y with q-values ≤ 0.05 as the signature genes of X. For each gene X, we 

generated the TCGA_All signature and TCGA_BRAF mutant signature for X where the 

former was generated using all TCGA samples with RNAseq data (n=356) and the latter 

was generated based on the subset of the TCGA samples with BRAF mutation (n=182). 

The signature genes of c-MET and LEF1 were listed in Supplementary Table S2 and 

S3.  

 

Differential patient survival was computed based on the 10-year survival data of the 

TCGA melanoma series of patients (available for 247 patients; BRAF mutant only, 118 

patients) with high expression (top quartile) vs. low expression (bottom quartile) of the 

genes of interest (i.e., the top 30 GOF and LOF genes along with reported MAPKi 

resistance-related genes). Significance was tested using log-rank test p-value. We 

examined possible confounding factors such as age, tumor ulceration and AJCC stage 

by including them in a Cox proportional hazard model. Specifically, AJCC tumor stage II, 

III, and IV, regardless of their subcategories A, B and C, were grouped under nominal 

class ʻStage IIʼ, ʻStage IIIʼ, and ʻStage IVʼ, respectively. Stage 0, Stage I and Stage II 

NOS were grouped under ʻStage Iʼ. Age (in days) was examined as a continuous 



variable. Ulceration was included as a binary ʻYʼ and ʻNʼ nominal variable. A GOF event 

gene has to have significant hazard ratio > 1 (p ≤ 0.05) for the top quartile patients and 

has differential survival log-rank p-value ≤ 0.05 to be defined to associate with worse 

survival. Similarly, an LOF gene event must have hazard ratio < 1 (p ≤ 0.05) for the 

bottom quartile patients and have differential survival log-rank p-value ≤ 0.05. 

 

To validate the expression-correlated CpG clusters we identified, we interrogated the 

TCGA Skin Cutaneous Melanoma data (http://cancergenome.nih.gov/), which includes 

both RNASeq expression and methylation data (for 335 tumor samples). For each CpG 

cluster, we first tested if its β value varies by at least 10% across all the samples (CpG 

clusters with multiple CpG sites were represented by the median of the β values of the 

CpG sites). If this criterion were met, we then selected the samples in top and bottom 

quartiles of the methylation level of the CpG cluster of interest and compared the 

expression of the CpGʼs annotated target gene in the two quartiles by wilcoxon rank 

sum test. Significance was defined by a difference of at least two-fold in the median 

FPKM expression levels between the two quartiles and one-sided wilcoxon rank-sum 

test p-value ≤ 0.05 (i.e., the direction of the test being defined by the overall correlation 

value of the CpG cluster in our data set; e.g., negative correlation would require higher 

expression level in the bottom quartile and vice versa). Similar analysis was also 

performed based on the top and a bottom quartile expressions of c-METʼs transcription 

factors. 

 



Western Blot Antibody Reagents. p-ERK1/2 (T202/Y204), p-MEK1/2 (S217/221), p-

AKT (T308/S473), p-c-MET (S338), total ERK1/2, MEK1/2, AKT, c-MET, p-β-catenin 

(S33/37 and T41), LEF1, p-YAP1 (S127), PARP1, cleaved PARP1 (D214), MEK1, BIM, 

GAPDH (Cell Signaling Technology), β-catenin (BD Bioscience), YAP1 (Santa Cruz), 

and TUBULIN (Sigma).  
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