
	

 

 

Supplementary Figure 1. Comparison of selected in situ SAXS patterns. The 

patterns were collected at various physicochemical conditions (see legend); Shown is 

also the change in the I(q) dependence of the scattering exponent to emphasize the 

invariant in the high-q part of the data (dashed lines) indicating that at q > 1 nm-1 the 

pattern originates from identical scatterers. The differences in intensity at  

q > 1 nm-1 are attributable to different volume fractions of the primary scatterers 

forming at different supersaturations (i.e., at higher supersaturations more scatterers 

exist in the solution). 

 

 

 

 

 



	

 

Supplementary Figure 2. Cylindrical form factor. Fit to the data at 60 seconds 

compared to spherical form factors of various radii values. 

 

 

 

 

 

 

 

 



	

 

Supplementary Figure 3. Comparison of the effect of the mono- and polydisperse 

structure factors. SAXS pattern at 330 seconds together with fits (solid lines) in 

which Pcyl(q) is expressed by Supplementary Equation 1 (see Supplementary Note 2) 

and two expression for the structure factor are compared: monodisperse SHS(q) (blue 

line, Supplementary Equation 2, Supplementary Note 3), and polydisperse < SHS(q)> 

(red, Supplementary Equation 4, Supplementary Note 3). Arrows mark the 

oscillations in the fitted curve caused by the monodisperse SHS(q). The inset shows a 

part of the scattering pattern relevant for the structure factor. 

 

 

 

 

 

 

 

 



	

	

Supplementary Figure 4. Structure factor during the transition between stages II 

and III. SAXS pattern at 450 seconds together with a fit (red solid line) in which 

Pcyl(q)  is a from factor of a cylinder, and the structure factor Seff(q) is expressed as a 

linear combination of < SHS(q)> and Aʹ·SF(q) (see Supplementary Notes 2, 3, 5 & 6). 

The green dashed and blue dotted lines represent fits of the corresponding expressions 

considering <SHS(q)> and SSF(q) respectively. The inset shows the detail of the 

scattering pattern relevant for the structure factor. 

 

 

 

 

 

 

 

 



	

 

Supplementary Figure 5. Surface fractal structure factor. SAXS patterns obtained 

from the experiment with a 50 mmol/L CaSO4 solution reacted at 12 °C showing 

different parts of the reaction. A) Intensity change in the SAXS pattern collected at 

720 seconds, and B) at 1500 and 3000 seconds; various fits are also shown (dashed 

and solid lines according to the inset legends). 
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Supplementary Figure 6. Scattering after 5400 seconds. A) 2D SAXS patterns 

from CaSO4 50 mmol/L at 12 °C at 5400 and 14370 seconds; B) Schematic 

representation of the morphology of flow-oriented particles; C) 1D SAXS curves for 

the same conditions. Shown also is the change in the I(q) dependence of the scattering 

exponent to emphasize the differences in the high-q part of the data (dashed lines). 
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Supplementary Figure 7. Visualisations of CaSO4 phases. Projections1 along c-

axis for A) CaSO4, anhydrite2 (AMCSD 0005117); B) CaSO4·0.5H2O, bassanite3 

(AMCSD 0006909); C) CaSO4·2H2O, gypsum4 (COD 2300259);  Proposed structures 

of  CaSO4 elongated primary species based on D) anhydrite; E) bassanite; F) gypsum.  

 

 

 

 



	

 

Supplementary Table 1. Overview of physicochemical conditions and CaSO4 

development stages. The WAXS time-periods correspond to the induction times at 

which the intensity of the (020) diffraction peak of gypsum was above background. 

Note the change in the time length/frame between experiments; these time frames and 

total experimental lengths were chosen based on previous work5, 6, 7 and match the 

increase in reactions rates at the higher temperatures and higher supersaturations.  

 

 50 
[CaSO4] [mmol/L] 

75 
[CaSO4] [mmol/L] 

100 
[CaSO4] [mmol/L] 

150 
[CaSO4] [mmol/L] 

12 °C 
30 seconds per frame,  

480 frames 
SAXS: stages I-IV 

WAXS: ~1500 seconds 

   

21 °C 

30 seconds per frame,  
400 frames 

SAXS: stages III-IV 
WAXS: ~750 seconds 

1 seconds per frame,  
600 frames 

SAXS: stages III-IV 
WAXS: ~140 seconds 

1 second per frame,  
600 frames 

SAXS: stages III-IV 
WAXS: ~60 seconds 

1 second per frame,  
600 frames 

SAXS: stages III-IV 
WAXS: ~40 seconds 

30 °C 

15 seconds per frame,  
500 frames 

SAXS: stages II-IV 
WAXS: ~650 seconds 

   

40 °C 

15 seconds per frame,  
240 frames 

SAXS: stages II-IV 
WAXS: ~400 seconds 

   

 

 

 

 

 

 

 

 

 



	

Supplementary Table 2. Values of molar mass, density, electron density and 

solubilities for the three polymorphs at 12 °C. 

 

Phase 
Molar 
mass 

[g/mol] 

Density 
[g/cm3] 

Electron 
density 
[e-/cm3] 

Solubility 
in pure 

H2O 
[mmol/L] 

Solubility in 
100 mmol/L 

NaCl 
solution  

[mmol/L] 
CaSO4·2H2O (gypsum) 172.17 2.31 - 2.33 711 - 717 15.48 22.75 
CaSO4·0.5H2O 
(bassanite) 145.15 2.69 - 2.76 815 - 836 101.20 111.90 

CaSO4 (anhydrite) 136.14 2.97 893 23.13 30.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

 

Supplementary Equation 1: 
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 Supplementary Equation 2: 
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The function G(q,v,ReHS) has the following form: 

 (b) 

, where A, B and C are dependent on the local volume fraction, v, through the 

following expressions: 
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Supplementary Equation 3: 
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Supplementary Equation 5: 

 

  

Supplementary Equation 6:  

 σ = < ReHS >
z +1

 

Supplementary Equation 7: 

        (a) 

     (b) 

Supplementary Equation 8: 

 

Supplementary Equation 9: 
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ISF (q,Ds ,A) = A ⋅SF(q,Ds )   ⇒ A ⋅SF(q,Ds ) = A ⋅
Γ(5 − Ds )sin[π(3− Ds ) / 2]
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Seff (q) =< SHS(q,< ReHS >, z) > +A '⋅SF(q,Ds )



	

Supplementary Note 1:  

Evolution of the scattering patterns at various physicochemical conditions  

We investigated the formation of solid CaSO4 phases in various supersaturated 

solutions with concentrations up to 150 mmol/L and at temperatures between 12 and 

40 °C. In all cases changes in SAXS and WAXS intensities and shapes of the patterns 

were observed over time and these changes were correlated with supersaturation 

levels and temperature (see Supplementary Table 1). The analysis of the time-

resolved SAXS patterns indicated that the scattering features for all experiments 

evolved in an equivalent manner, regardless of solution conditions. Thus, for 

simplicity, we discussed in the main text in detail the structural information contained 

within the scattering patterns based on the 50 mmol/L CaSO4 experiments measured 

at 12 °C. For the experiments at higher supersaturations (75 – 150 mmol/L) and 

higher temperatures (21, 30 and 40 °C), the higher reaction rate5 prevented us in some 

cases to clearly distinguish all 4 stages (Supplementary Table 1). Nevertheless, the 

start of the reaction in the experiment at the lowest supersaturation (12 °C and  

50 mmol/L; Supplementary Fig. 1) can be compared with selected patterns at similar 

time frames from experiments at a higher temperature (21 °C) and higher 

supersaturations (50 – 100 mmol/L; Supplementary Fig. 1), revealing differences in 

the early stages. Each curve shows different characteristic intensities at q < 1 nm-1 

(increase with concentration and temperature) indicating that at comparable reaction 

times the structures at 21 °C and higher supersaturations already reached a more 

advanced stage of development. The low-q profiles resemble those of stage III for the 

50 mmol/L, 12 ºC experiment (see the main text, Fig. 1A). Important to note, is that at 

q > 1 nm-1 all scattering curves have nearly identical profiles (Supplementary Fig. 1), 



	

clearly demonstrating that, despite the differences in solution supersaturation, the 

primary species are equivalent in terms of shape and size.  

 

Supplementary Note 2:  

Mathematical expressions for scattering from cylindrical species 

The first four scattering curves in Fig. 2A in the main text (30 – 120 seconds) 

contain a clear Guinier region8, 9 i.e., a plateau at I(q) ∝  q0  for q < 1 nm-1, and a 

region for which	I(q) ∝ q-1 for ca. 1.5 nm -1 > q > 3.0 nm-1.  The fact that a I(q) ∝ q0 

dependence is found at low-q for q → 0 indicates that scattering originated from non-

aggregated and non-interacting species. Furthermore, the occurrence of the  

I(q) ∝ q-1 dependence at high-q is typically attributable to scattering from elongated, 

anisotropic shapes8. Therefore, for stage I, the scattering curves could be best fitted 

with Supplementary Equation 1, which includes the analytical expression for the 

scattering intensity from the collection of non-interacting homogenous cylindrical 

objects of length L and radius R (see ref. 8). In Supplementary Equation 1, φ  is the 

volume fraction of scatterers, Δρ  the scattering length density difference between a 

scatterer and the matrix (a solvent), Vpart is the volume of a single particle (scatterer) 

and Pcyl(q,R,L) is the form factor of the cylinder. Furthermore, J1(x) is the first-order 

Bessel function and α is the angle between the long axis of the cylindrical object and 

the primary beam. In Supplementary Equation 1, the form factor Pcyl(q,R,L) is equal 

to the square of the amplitude F2(q,R,L,α) averaged over all angles α, so that

Pcyl (q,R,L) = F  2 (q,R,L)
α

. Supplementary Figure 2 illustrates the fit of 

Supplementary Equation 1 to the data (collected at 60 seconds, see also the main 

text). In this figure we also compare the cylindrical form factor fit with the analogues 



	

fits based on expression for scattering from spherical particles8 of various radii, and 

the same pre-factor as the cylinder. One needs to point out that within the measured  

q-range the part of the form factor contributing to the scattering from the cylindrical 

cross-section is represented by data points at q > ~3 nm-1. Hence, a circular shape for 

the cylindrical cross section is only assumed for the purpose of fitting, and the 

resulting values of R constitute the upper limit of this parameter. 

 

Supplementary Note 3: 

Mathematical expressions for scattering from the domains of primary species 

For all scattering profiles shown in Fig. 2A of the main text, at q > 1 nm-1, 

neither the shape of the profiles nor the intensity values of the scattering features 

changed, but at q < 0.3 nm-1, the intensity systematically decreased between 150 and 

390 seconds (stage II). We attribute this change to an evolution of the inter-particle 

structure factor S(q), which resulted from the increase in particle-particle interferences 

between the primary species in solution. In our analysis we considered a simplified 

structure factor, SHS(q), that only accounts for the interactions through the hard-core 

repulsive potential10 expressed by Supplementary Equation 2, where SHS(q) depends 

on the local volume fraction of interacting neighboring scatterers, v, and the effective 

hard-sphere radius, ReHS, which represents the typical distance between neighboring 

primary scatterers. Our initial fitting, including the hard-sphere model described in 

Supplementary Equation 2, also indicated that lengths, radii, and φVpart(Δρ)2 pre-

factors (see Supplementary Note 2) of the cylindrical form factor were constant 

throughout stages I and II.  Since the geometry of the formed primary entities 

remained constant we can assume that their electron density did not change either, 

and invariably it follows that their volume fraction φ also remained constant.  



	

The actual physical dimensions of interacting cylindrical particles can be 

compared to the typical distance between neighbouring particles, by relating the 

effective hard-sphere radii, ReHS (from Supplementary Equation 2) with the radii of 

gyration (Rg) of the particles. The gyration radius, Rg, of a cylinder of length L and 

radius R is expressed by Supplementary Equation 3. Our data indicate that ReHS >> Rg, 

and this implies that, on average, the distance between the formed primary particles 

was sufficiently large to prevent aggregation. By taking into account the constant 

value of φVpart(Δρ)2, and the fact that ReHS values are large (> 8 nm), we propose that 

these primary species form domains of locally increased scatterer number densities 

separated by regions depleted of scatterers, i.e., local species number density 

fluctuations occurred in the solution. These heterogeneities can be modelled by 

assuming a length distribution of the effective hard-sphere radius, and because  

ReHS >> Rg, ReHS is independent of the size and geometry of the primary scatterers. 

Therefore, the length distribution does not affect the form factor of primary species 

but only their structure factor11. This concept is mathematically expressed in 

Supplementary Equation 4, where the size distribution D(r) is combined with the 

hard-sphere structure factor, with <ReHS> denoting the intensity averaged effective 

hard-sphere radius, and σ the corresponding standard deviation and r is an integration 

variable. The structure factor expressed by Supplementary Equation 4 is further 

referred to as a polydisperse hard-sphere structure factor, <SHS(q)>, and for D(r) we 

used a Zimm-Schulz-Flory distribution12. Supplementary Equation 5 expresses D(r), 

in which Γ denotes a gamma function, z is related to the width of the distribution, and 

the standard deviation σ is expressed by Supplementary Equation 6. We present 

further details about the effect of the hard-sphere structure factor in Supplementary 



	

Note 4, showing an example fit of monodisperse and polydisperse variants of the 

hard-sphere structure factor. 

 

Supplementary Note 4:  

Monodisperse versus polydisperse hard-sphere structure factor 

Fitting with the monodisperse SHS(q) structure factor from Supplementary 

Note 3 and Supplementary Equation 2, introduces oscillations to the fitting curve, 

which are not present in the original data. This is illustrated by a fit to the pattern 

collected at 330 seconds based on combining Supplementary Equation 1 (see 

Supplementary Note 2) and Supplementary Equation 2  (see Supplementary Note 3), 

where the fit is a blue curve in Supplementary Fig. 3. The red curve in Supplementary 

Figure 3 shows the improved fit to the experimental data when the expression for the 

scattering intensity includes a polydisperse <SHS(q)>  structure factor (Supplementary 

Note 3, Supplementary Equation 4). For both the monodisperse and polydisperse 

variants of the hard-sphere structure factor, the curve fittings yielded very similar 

values of ReHS (monodisperse) and <ReHS> (polydisperse) parameters. But, when 

<SHS(q)> was used the size distribution function led to smearing out and dampening 

of the oscillations (arrows in Supplementary Fig. 3). 

 

Supplementary Note 5: Mathematical expressions for scattering from the surface 

fractal aggregates of primary species 

 During the first part of stage III between 420 and 840 seconds, in the  

q > 1 nm-1 region only negligible variations in shape and intensity were observed (see 

main text, Figs. 1 and 2B). On the other hand at q < 1 nm-1 a characteristic increase in 

intensity occurred, indicating a gradual growth of the larger scattering features. 



	

Beyond 420 seconds, the overall increase in scattering at q < 1 nm-1 followed a  

I(q) ∝ q-3 > -a > -4 (where a is the exponent) dependence indicating that the signal could 

be attributed to scattering from rough fractal surfaces. Bale and Schmidt13 and  

Wong and Bray14 derived expressions approximating scattering from such features 

(Supplementary Equation 7). In this expression A is a constant proportional to the 

surface area of the scattering features (such as crystal surfaces or pore surfaces etc.) 

and Γ denotes a gamma function. Furthermore, the parameter Ds is a surface fractal 

dimension, where Ds = 2 represents smooth surfaces and Ds → 3 represents very 

rough fractal surfaces.  

As is further evidenced by the detailed analysis of the φVpart(Δρ)2 and the 

normalized φ(Δρ)2 pre-factors for the primary species (Supplementary Note 2), the 

growth of the surface fractal features proceeded throughout the entire stage III, while 

φ (Δρ)2 remained constant (main text, Fig. 3B). This indicates, that the growth of the 

surface fractals can be interpreted as the aggregation of primary species. Thus, 

Supplementary Equation 7, is as such only applicable to the low-q part of our data, 

since it implies that ISF(q → ∞) = 0, and does not allow for the surface fractal to be 

internally composed of the smaller primary scatterers with form factor Pcyl(q). 

Therefore, Supplementary Equation 7 was re-written as a structure factor SSF(q) to 

allow the contribution from the smaller structural units. This way, the following 

necessary conditions can be fulfilled: in the low-q regime Pcyl(q → 0) = 1 and for 

high-q SSF(q → ∞) = 1 (Supplementary Equation 8). In Supplementary Equation 8, 

the SF(q,Ds) part is defined in the same way as in Supplementary Equation 7. 

However, the difference between the two expressions is in the constants, where A was 

defined as being proportional to the total surface of all scattering features. In contrast, 



	

Aʹ is proportional to the relative surface of all scattering features formed from the 

aggregating primary species and is normalized against the form factor in order to 

fulfil the condition that SSF(q → ∞) = 1. The scattering patterns collected after  

420 seconds (see main text, Figs. 1 and 2B), when the intensity starts to increase at 

low-q, mark the onset of very rapid aggregation of the primary scatterers, which in 

stage II only loosely interacted forming domains of widely-spaced individual 

scatterers. This process is dominated at low-q by the scattering from the growing 

surfaces of these aggregates. It is worth noting that the inter-particle interactions 

between 420 and 510 seconds were also affected by the minor contribution from 

<SHS(q)>, as we discuss in the Supplementary Note 6 below.  

 

Supplementary Note 6:  

Structure factor during the transition between stages II and III  

In order to explain the scattering contributions in the patterns collected 

between 420 and 510 seconds (i.e., the transition between stages II and III), we 

considered a collection of primary species, in which some of the units would be 

grouped into domains of scatterers that interact via a hard-sphere structure factor 

<SHS(q)>, but at the same time some of those units would start forming larger, 

densely-packed aggregates. These new aggregates would be composed, at short 

length-scales, of primary species, but arranged in such a way that at larger length-

scales the structure would appear to be a solid coarse surface. In such a case, the low-

q regime of the scattering curves, where by definition Pcyl(q → 0) = 1, could be 

characterised by the linear combination of scattering from co-existing hard-sphere 

structures (domains of primary species) and surface fractals (internally denser 

aggregates of primary species). This is in contrast to the high-q regime which is 



	

dominated by scattering from the form factor and where the structure factor is 

assumed as S(q → ∞) = 1. The effective structure factor of such a collection of 

primary species can be expressed by the semi-empirical Supplementary Equation 9. 

Here, the components of the sum were defined in Supplementary Notes 3 and 5, with 

Aʹ being proportional to the relative surface of all scattering features and normalized 

against the form factor in order to fulfil the condition that S(q → ∞) = 1. Between 

420 and 510 seconds both contributions followed the fit as expressed by 

Supplementary Equation 1, but due to the decreasing local volume fraction v 

(obtained from the fits), the relative contribution from <SHS(q)> became small 

relatively fast compared to the quickly-evolving surface fractal term. After 510 

seconds the scattering model contained exclusively the latter term.  Hence, we 

assumed that after 510 seconds <SHS(q)> → 1, and the expression for the resulting 

structure factor yielded SSF(q) (Supplementary Equation 8). Supplementary Figure 4 

shows a scattering curve at 450 seconds with a fit to the data. For the sake of 

comparison the respective contributions from <SHS(q)> and SSF(q) are also plotted. 

 

Supplementary Note 7:  

Structure factor and form factor during the transition between stages III and IV  

During stages III and IV (main text, Fig. 1) the increase in intensity is 

dominated by a change at q < 1 nm-1
.
 We modelled these changes in terms of surface 

fractal contributions using the above described scattering model which fitted well all 

patterns up to ~1500 seconds. However, as the system further developed, the 

scattering curves showed considerable changes in their shape at q > 1 nm-1 indicating 

the growth of the primary species. As illustrated in Supplementary Figure 5 the 

scattering curves at 720 and 1500 seconds are fitted with a cylindrical form factor and 



	

a surface fractal structure factor SSF(q). Even though at 3000 seconds the low-q part of 

the scattering curve could still be fitted by SSF(q), at high-q the form factor changed. 

Thus, the expression for the cylindrical form factor was no longer valid and the 

scattering curves for stage IV (between 1500 and 5400 seconds) were fitted only 

partially with an expression for the scattering intensity including SSF(q) 

(Supplementary Note 6). The auxiliary cylindrical form factor expression was only 

used to extract the φVpart(Δρ)2  pre-factor values (Supplementary Note 2),  

which enabled the correct scaling of the structure factor. For scattering expressed by a 

form factor on its own, the φVpart(Δρ)2 pre-factor corresponds to I(q=0) because 

Pcyl(q=0) = 1, which is no longer true when scattering at low-q is modified by a 

contribution from a structure factor. However, because by definition S(q → ∞) = 1, 

we could use an approximate form factor to derive the values for φVpart(Δρ)2 by 

simultaneously extrapolating the form factor to low-q and the structure factor to  

high-q. This way the pre-factor is the minimized parameter that is matching the 

mutual scaling of both factors (see Supplementary Fig. 5). As a result of this fitting 

the characteristic parameters that represent growth of surfaces throughout stage IV 

could be obtained without the form factor. 

 

Supplementary Note 8:  

Evolution in the morphology of CaSO4 precipitates after 5400 seconds 

In the main text, we showed the development in the SAXS patterns up to  

5400 seconds for the case of 50 mmol/L CaSO4 at 12 °C. This period contains the 

most significant changes in SAXS and is therefore the most relevant part for revealing 

the mechanisms of CaSO4 nucleation, growth and transformation under the 

aforementioned physicochemical conditions. Nonetheless, the actual measurements 



	

were performed up to ~4 hours (14370 seconds). In this later period very limited 

changes were observed in the SAXS signal and therefore only the final scattering 

pattern is compared to the last scattering pattern from stage IV at 5400 seconds 

(Supplementary Figure 6). Throughout most of the reaction we dealt with isotropic 

scattering as indicated by the circular shape of the scattered intensity in 2D (presented 

in Supplementary Fig. 6A for 5400 seconds). However, during the last stages of 

CaSO4 growth the 2D SAXS patterns became anisotropic, as shown in Supplementary 

Figure 6A for 14370 seconds. If the particles are sufficiently large and elongated, they 

will become aligned with respect to their long-axes in the horizontally mounted 

capillary of the flow-through cell (Supplementary Fig. 6B). Furthermore, if within the 

accessible q-range there are any orientation-dependent internal variations in the 

microstructure of particles with respect to their long-axes, the resulting 2D SAXS 

pattern would be anisotropic. In Supplementary Figure 6A for the pattern collected at 

14370 seconds, stronger scattering at higher angles is observed in the direction almost 

parallel to the Y axis of the detector (vertical direction), and thus normal to X axis 

(horizontal direction). Such a scattering pattern is expected from morphologies in 

which larger dimensions of anisotropic features are oriented along the flow (and long-

axes of the particles containing these features, Supplementary Fig. 6B), and smaller 

features are perpendicular to the flow (and hence perpendicular to long-axes of 

particles, Supplementary Fig. 6B). In Supplementary Figure 6C we compare 1D 

scattering curves from the isotropic case at 5400 seconds, with those from the 

anisotropic case representing scattering contributions from long- and short-axis  of 

anisotropic particles at 14370 seconds. It can be seen that only minor changes in 

SAXS intensity occurred between 5400 and 14370 seconds, but characteristically at 

high-q the scattering pattern shifted slightly further towards lower q-values during the 



	

more advanced stage of the process. This shows that beyond 5400 seconds, at the 

nano-scale, internal building units continued to grow, and larger morphologies were 

observed for the direction parallel to the flow.  

 

Supplementary Note 9:  

Selected physicochemical properties of CaSO4·xH2O polymorphs  

In Supplementary Table 2 we present the relevant physicochemical 

information regarding the three calcium sulphate polymorphs. The solubility of 

CaSO4·xH2O in aqueous solutions was calculated with the geochemical code 

PHREEQC15, and is based on bulk solubility data. Based on Supplementary Table 2, 

we calculated that for a 50 mmol/L CaSO4 solution at 12 °C. 

Without taking into account the solubility, one would expect approximate 

volume fractions, φ, of 0.369% - 0.373% for gypsum, 0.263% - 0.270% for bassanite, 

and 0.229% for anhydrite. By taking into account the bulk solubilities in pure water at 

12 °C, the expected φ is 0.256% - 0.258% for gypsum and 0.104% for anhydrite, 

whereas for bassanite no solid phase is expected (i.e., undersaturated). Finally, when 

the solubility in an actual solution containing the dissolved Na+ and Cl- is also 

considered (which are the counter-ions to the Ca2+ in CaCl2 and to SO4
2- in Na2SO4 in 

our original stock solutions; see Methods), the expected φ is 0.201% - 0.203% for 

gypsum and 0.062% for anhydrite, whereas again for bassanite no solid phase is 

expected.  

The calculated volume fraction values do not take into account the change in 

volume between a solution containing only a fully dissolved phase and one with a 

solid phase. However, this change is negligible because only low concentrations of 

reagents are dissolved, and thus, the calculated volume fractions based on the above 



	

data can be regarded as a very close approximation. We used the predicted values of 

φ, to calculate the electron densities of what we termed pseudo-phases, i.e.,  

the electron densities of phases with an assumed volume fractions for gypsum, 

bassanite and anhydrite. For instance, if anhydrite was the phase contributing to the 

scattering of the primary particles, the corresponding volume fraction value would 

yield the electron density of anhydrite, and therefore the actual extracted (rather than 

expected) value is referred to as a pseudo-anhydrite phase. In scattering one considers  

Δρ=|ρphase - ρsolvent|, and when using the electron density of the solvent (water) of  

334 e-/nm3, we could calculate the density of the newly forming phase, ρphase. The 

results are presented in Fig. 4 in the main text. 
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