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Supplementary Figure 1: Rheology of the polymer solutions. Time dependence of the viscosity 

for (a) VPS-8 and VPS-22 at 20°C, and (b) PDMS at 35 and 40°C. Data points are experimental 

data and the dashed lines correspond to fits of twhe theoretical model presented in the main text. 

The shear rate is fixed at 𝛾̇ ≈ u/h ≈ 0.1 s −1, which is consistent with the flow field during the 

coating process. 

  

Supplementary Figure 2: Shear rate evolution at different locations. Shear rate evolution 

estimated as 𝛾̇ ≈ u(ϕ, t)/h(ϕ, t) for VPS-32 poured on a sphere with R = 38 mm. Within the time 

period, τd < t < τc (τd =6 s is the initial drainage time and τd =574 s is the curing time) and over the 

full range of ϕ, the average value of these various curves is 𝛾̇= 0.13 s-1 and close the value of 𝛾̇ = 

0.13 s-1 used in the main text. 
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Supplementary Figure 3: Rheology of VPS-32 with different shear rates. Time dependence of 

the viscosity of VPS-32 with different constant shear rates. The parameters α (±7%), β (±7%), and 

τc (±4%) do not vary much for different shear rates. Only μ0 varies significantly with different 

shear rates.  μ0 = {8.6, 7.1, 5.9, 5.6} Pa.s with 𝛾̇ = {0.05, 0.1, 0.25, 0.5} s −1, respectively. The 

results are indicative of non-Newtonian behavior. 

 

Supplementary Figure 4: Rheology of PDMS with varying shear rate at 20°C. The viscosity 

of PDMS does not depend on the shear rate when below 10 s-1. All data were measured over a 

period of 5 min when the effects of curing are still negligible (see Fig. 5b of the main text for the 

time evolution of μ of PDMS at 20°C). 
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Supplementary Figure 5: Shell thickness can be tuned by the waiting procedure. The final 

shell thickness (normalized by its value hf,0 when τw = 0) can be tuned by delaying the pouring time 

by τw from the moment the polymer solution is prepared. The shift factor for VPS-8 is δ = 2.1±0.1. 

See Fig. 5a of the main text for the corresponding data for VPS-32 and PDMS. 

 

 

Supplementary Figure 6: Time evolution of the thickness of the film at the pole. Comparison 

between analytical and numerical solutions for the film thickness evolution at ϕ= 0 with N = 256, 

B = 2.3 and ε= 0.01 (N is the number of discretization nodes, B is the modified Bond number 

defined in the main text, ε = hi/R is the aspect ratio of the film and hi is the initial average film 

thickness). These results act as a verification of the simulations with the theoretical model, both of 

which are validated with experiments in the main text. 
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Supplementary Figure 7: Time evolution of the thickness of the film for initially sinusoidal 

thickness profiles. Comparison between the film thickness evolution computed numerically and 

the 2nd-order asymptotic solution, both of which for initially sinusoidal thickness profiles, 

ℎ̃(𝜙, 0) = 1 + 𝐴cos𝜙  with 𝐴 =  {−0.5, 0, 0.5} . The dimensionless governing parameters for 

Supplementary Eq. (6) are ε = 0.01 and B = 2.3. 

 

Supplementary Table 1: Coefficients for the viscosity model. Values for the initial viscosity μ0, 

curing time τc, and fitting parameters α and β of our model, for the various polymers used in the 

experiments (see Methods section of the main text for experimental details). 

  

Polymer μ0 (Pa.s) α β (× 10−3) τc (s) 

 VPS-32 

VPS-22 

7.1±0.2 

6.5±0.3 

5.3±0.7 

6.3±0.7 

2.06±0.09 

2.05±0.01 

574±11 

738±16 

VPS-8 2.0±0.1 7.7±1.2 2.57±0.01 479±7 

PDMS, 20°C 2.4±0.1 3.7±0.2 0.560±0.001 2836±81 

PDMS, 35°C 2.2±0.1 6.4±1.0 1.94±0.01 613±14 

PDMS, 40°C 2.2±0.1 4.8±0.9 3.27±0.03 338±12 
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Supplementary Note 1: Supporting experimental results on the Polymer Rheology  

 

  The initial viscosity, the curing time, and the model fitting parameters for the polymer solutions 

used in the experiments are presented in Supplementary Table 1. The data for VPS-32 is given in 

Fig. 2 of the main text for the fixed shear rate of 𝛾̇ ≈ u/h ≈ 0.1 s−1. The time evolution of the 

viscosity, as well as the model fitting curves for other liquids are shown in Supplementary Fig. 1.   

 

  For the representative case (VPS-32 with R=38 mm) shown in Supplementary Fig. 2, the shear 

rate 𝛾̇ ≈ u(ϕ, t)/h(ϕ, t) is a function of ϕ and t  and has the average value of   0.13 s−1, for the data 

within the time period, τd < t < τc (τd =6 s is the initial drainage time and τd =574 s is the curing 

time) and over the full range of ϕ. This calculation was conducted using the rheology of VPS 

measured for 𝛾̇ =0.1 s −1. Since both of these values (the estimated value and the modeled averaged 

value) are approximately the same, this choice for the shear rate was referred to as self-consistent 

in the main text. We measured the viscosity of VPS-32 with different shear rates ranging from 

0.05 (close to the limit of the resolution of our rheometer) to 0.5 s−1 and the results are shown in 

Supplementary Fig. 3. The fitting parameters α (±7%), β (±7%), and the curing time τc (±4%) do 

not vary significantly for the explored shear rates. By contrast, the initial viscosity μ0 does varies 

in a more pronounced way, as μ0  = {8.6, 7.1, 5.9, 5.6} Pa.s with 𝛾̇ = {0.05, 0.1, 0.25, 0.5} s−1, 

respectively. This is indicative of non-Newtonian behavior. Nevertheless, this changes in the shear 

rate yields only moderate differences in the final thickness of the shell (owing to square root 

dependence in equation (6) of the main text). We found the variations in thickness to be of ±10% 

of the reference case (𝛾̇ = 0.1 s−1), even though the shear rate is varied by up to 500% of the 

reference value. Therefore, the choice of a single shear rate of 0.1 s−1 does not compromise our 

results, and removes an adjustable parameter from the problem.  

 

Unlike VPS that is a shear-thinning liquid, PDMS has a constant viscosity in the range of shear 

rates that are relevant to the coating process, as shown in Supplementary Fig. 4. Both VPS and 

PDMS have a time dependent viscosity presented in Fig. 2d and Fig. 5b of the manuscript. 
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Supplementary Note 2: Discussion on the experimental protocol for delayed pouring 

 

  We now provide additional results relevant to the Discussion section of the main text regarding 

the protocol for delayed pouring. In Supplementary Fig. 5 we plot the normalized film thickness, 

hf /hf,0 (where hf,0 is the value of the final thickness when τw = 0) as a function of the waiting time, 

τw, normalized by the curing time, τc, for VPS-8 and VPS-22. 

  For convenience, we reproduce equation (6) from the main text, for the final thickness, as a 

function of the various physical and geometric parameters 

 ℎ𝑓 = √
3𝜇0𝑅

4𝜌𝑔

1

𝐾
(1 +

𝜙2

10
), (1) 

with 𝐾 = {(𝑘 − e−𝛽𝜏𝑐) 𝛽⁄ } + {𝜏𝑐𝑒
−𝛽𝜏𝑐 (𝛼 − 1)⁄ }, and 𝑘 = 𝑒−𝛽𝜏𝑤  (or k=1) with (or without) the 

waiting procedure between the preparation and coating of polymer solution, respectively. For more 

details about its derivation, see Supplementary Note 5, below. 

  For low viscosity polymer solutions (PDMS and VPS-8) the shift factor δ is needed to predict the 

final thickness. We speculate that, when waiting in bulk in a container, the boundary layers are 

thin compared with the size of the container due to the low viscosity of these polymers. 

Consequently, the majority of the polymer solution is not disturbed by the movement of the 

container, which is therefore in a quiescent state until τw. On the other hand, the higher viscosity 

of VPS-32 and 22, results in the diffusion of shear in the entire bulk of the solution during the 

waiting time, τw, while the bulk of the polymer solution is sequentially and continuously poured 

onto a series of identical molds. Thus, the theoretical model without a shift factor agrees well with 

the experimental results of VPS-32 and 22, but δ is finite for the other polymers (see Discussion 

in the main text). 
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Supplementary Note 3: Supporting analytical results for the lubrication model 

 

  The derivation of the underlying equation of our model presented in the Methods of the 

manuscript is briefly outlined in this section. We assume a thin liquid film on a sphere of radius, 

R, invariant in the azimuthal direction. Its initial characteristic thickness of the film is hi; the 

resulting film aspect ratio is ε = hi/R. As mentioned in the Discussion section of the main text, the 

time evolution of a thin-film on the outside and underside of the mold produces identical results. 

Here, we focus on the derivation of the first case. Considering a small aspect ratio ε of the film, 

mass conservation indicates that the velocity normal to the interface is significantly smaller than 

the tangential component. Furthermore, the low Reynolds number conditions for this flow allows 

for the Stokes equations to be used. The equation for momentum balance in the radial direction is 

 0 = −
1

𝜌

𝜕𝑝

𝜕𝑟
− 𝑔 cos𝜙, (2) 

and the boundary condition for the pressure is p(R+h) = p0 + γκ (p0 is the external pressure, γ is 

the surface tension of the fluid, and κ is the curvature of the interface). Integrating Supplementary 

Eq. (2) along the radial direction and using the above boundary condition yields the pressure 

distribution, p(r, ϕ) = p0 + γκ + ρg cos ϕ (R +h −r). By integrating twice, the ϕ component of the 

momentum equation, 

 0 = −
1

𝜌𝑟

𝜕𝑝

𝜕𝜙
+ 𝜈

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑢

𝜕𝑟
) + 𝑔 sin𝜙, (3) 

and considering the no-slip boundary condition at the sphere surface, u(R, ϕ) = 0, as well as the 

zero-shear stress interface, u(R + h, ϕ)/r = 0, we obtain the tangential velocity component: 

 𝑢(𝑟, 𝜙) = (−
𝛾𝜅𝜙

𝜇𝑅
−
𝜌𝑔 cos𝜙ℎ𝜙

𝜇𝑅
+
𝜌𝑔 sin𝜙

𝜇
)(ℎ −

𝑟 − 𝑅

2
) (𝑟 − 𝑅). (4) 

  The depth-integrated velocity is given by 𝑄(𝜙) = ∫ 𝑢(𝑟, 𝜙)𝑑𝑟
𝑅+ℎ

𝑅
. Using the local mass 

conservation in spherical coordinates, h/t +(R sin ϕ)-1(sin ϕ Q)/ϕ = 0, we eventually obtain the 

lubrication equation: 

 ℎ𝑡 +
1

3 sin𝜙 𝜇𝑅
[ℎ3 sin𝜙(−

𝛾𝜅𝜙

𝑅⏟
𝐈

−
𝜌𝑔 cos𝜙 ℎ𝜙

𝑅⏟        
𝐈𝐈

+ 𝜌𝑔 sin𝜙⏟    
𝐈𝐈𝐈

)]

𝜙

= 0, (5) 
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where the leading order curvature derivative is κϕ = −R-2(h ϕϕϕ + 2hϕ + hϕϕ cot ϕ − hϕ csc2 ϕ). The 

term I in the spatial variation of the flux corresponds to the surface tension effects, term II 

represents the variation of the hydrostatic pressure distribution and term III accounts for the 

drainage. In the case of a liquid film on the underside of a sphere, the hydrostatic pressure variation 

term would have an opposite sign, but the rationale would otherwise be identical. 

  The film thickness and time can be non-dimensionalized by hi and the initial drainage time, τd = 

μR/(ρghi
2), respectively, such that the lubrication equation expressed with non-dimensional 

quantities is written as 

 

ℎ̃𝑡̃ +
1

3 sin𝜙
{ℎ̃3 sin𝜙 [

𝜖2

𝐵
(ℎ̃𝜙𝜙𝜙 + 2ℎ̃𝜙 + ℎ̃𝜙𝜙 cot𝜙 − ℎ̃𝜙 csc

2 𝜙) − 𝜖ℎ̃𝜙 cos 𝜙

+ sin𝜙]}
𝜙

= 0, 

(6) 

where B = ρghiR/γ is the modified Bond number. 

  For a time-varying viscosity, the initial drainage time is built upon μ0 and the factor μ0/μ(t) 

appears ahead of the flux variation terms. 

  From the mean velocity, the velocity at the interface can be computed as: 

 𝑢(𝜙, 𝑡) =
3

2
〈𝑢(𝜙, 𝑡)〉 =

3

2

𝑄(𝜙, 𝑡)

ℎ(𝜙, 𝑡)
. (7) 
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Supplementary Note 4: Derivation of the asymptotic nonlinear drainage flow solution 

 

  The nonlinear drainage flow solution presented in the Results section of the main text is derived 

next. Assuming that the depth of the fluid varies slowly along the substrate and that the effect of 

surface tension is negligible, which are both valid assumptions except close to the moving front at 

short times, we obtain the simplified version of the Supplementary Eq. (6) [1]: 

 ℎ̃𝑡̃ +
1

3 sin𝜙
(ℎ̃3 sin2 𝜙)

𝜙
= 0. (8) 

This equation confirms that, under the aforementioned assumptions, the dynamics of the thin-film 

does not depend on whether it is formed on the underside or outside of the substrate. The velocity 

field is given by 𝑢̃(𝜙, 𝑡̃) = ℎ̃(𝜙, 𝑡̃)2 sin 𝜙 /2𝜖 (the tilde represents dimensionless quantities), or in 

dimensional form: 

 𝑢(𝜙, 𝑡) =
𝜌𝑔ℎ(𝜙, 𝑡)2

2𝜇
sin𝜙. (9) 

  Furthermore, we postulate an expansion solution of the form ℎ̃(𝜙, 𝑡̃) = ℎ̃0(𝑡̃) + 𝜙
2ℎ̃2(𝑡̃) +

𝜙4ℎ̃4(𝑡̃) + 𝒪(𝜙
6), where odd terms vanish due to symmetry reasons. The zeroth-order solution,  

ℎ̃0(𝑡̃) = (1 + 4𝑡̃ 3⁄  )−1/2, is well known (Refs. [24,25] of the main text) and corresponds to the 

exact solution of Supplementary Eq. (8) at the pole (i.e., ϕ = 0). By substituting this expansion into 

Supplementary Eq. (8) and further developing cos𝜙~1 − 𝜙2/2 + 𝜙4/24 + 𝑂(𝜙6) and 

sin𝜙~𝜙 − 𝜙3/6 + 𝑂(𝜙5 ), we obtain a differential equation for each order. The equation for ℎ̃2 

is: 

 
𝑑ℎ̃2
𝑑𝑡̃

+ 4ℎ̃0
2ℎ̃2 =

1

3
ℎ̃0
3. (10) 

The particular solution is assumed to be of the form  ℎ̃2
𝑃(𝑡̃) = 𝑎(1 + 4𝑡̃ 3⁄ )−1/2. Substituting this 

form into Supplementary Eq. (10) results in an equation for the parameter a, yielding a = 1/10. On 

the other hand, the homogeneous solution of the equation is  ℎ̃2
𝐻(𝑡̃) = 𝑏(1 + 4𝑡̃ 3⁄ )−3. The second 

order solution of Supplementary Eq. (8),  ℎ̃(𝜙, 𝑡̃) ≈ ℎ̃0(𝑡̃) + 𝜙
2[ℎ̃2

𝑃(𝑡̃) + ℎ̃2
𝐻(𝑡̃)],  can be 

eventually shown to read 

 
ℎ̃(𝜙, 𝑡̃) ≈

1

√1 +
4
3 𝑡̃

[1 +
𝜙2

10
(1 + 𝑐 (1 +

4

3
𝑡̃)
−5/2

)], 
(11) 
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where the parameter c depends on the initial condition. 

  Note that the homogeneous solution only influences the transient regime; for large times the 

solution decreases as (4𝑡̃ 3⁄ )−1/2 and is independent of the initial condition. In dimensional form, 

the asymptotic solution for the film thickness is given by: 

 
ℎ(𝜙, 𝑡) ≈

ℎ𝑖

√1 +
4
3
𝑡
𝜏𝑑

[1 +
𝜙2

10
(1 + 𝑐 (1 +

4

3

𝑡

𝜏𝑑
)
−5/2

)]. 
(12) 

A more accurate solution is obtained when considering the fourth-order term in the expansion. The 

equation for ℎ̃4 is: 

 
𝑑ℎ̃4
𝑑𝑡̃

+ 6ℎ̃0
2 ℎ̃4 =

4

3
ℎ̃0
2 ℎ̃2 − 6 ℎ̃0ℎ̃2

2−
1

36
ℎ̃0
3. (13) 

Proceeding in a similar way as for the second-order problem, the fourth-order solution reads:  

 

ℎ̃4(𝑡̃) =
41/4800

√1 +
4
3 𝑡̃

[1 +
216𝑐2

41
(1 +

4

3
𝑡̃)
−5

+
32𝑐

41
(1 +

4

3
𝑡̃)
−5/2

+ 𝑑 (1 +
4

3
𝑡̃)
−4

], 

(14) 

where the parameter d depends on the initial condition. At late times, the spatial variation of the 

film thickness is therefore of the form 1 + (1/10)𝜙2 + (41/4800)𝜙4 + 𝒪(𝜙6). 
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Supplementary Note 5: Considering curing effects for the predictions of the final film 

thickness 

 

  In order to obtain the prediction for the final film thickness given by equation (6) in the main text, 

Supplementary Eq. (12) needs to be modified to take into account the rheology of the polymer 

fluid. For this purpose, we make use of the following empirical description for the evolution of the 

viscosity, which we found to fit our experimental data well: 

 𝜇(𝑡) = {
𝜇0 exp(𝛽𝑡),
𝜇1𝑡

𝛼 ,
   
if 𝑡 ≤ 𝜏c,
if 𝑡 > 𝜏c,

 (15) 

with μ1 = μ0.exp(βτc)τc
-α, where τc is the curing time and α and β are parameters which have to be 

fitted depending on the specific details of the fluid (see Supplementary Table 1 for the numerical 

values for the polymers used in our experiments). Note that because of the small value of the 

parameter β, the viscosity can be initially assumed as constant (see the Results section of the main 

text). The asymptotic estimates for the film thickness and for the film surface velocity resulting 

from this viscosity model and Supplementary Eqs. (12) and (9) are now derived. 

  During the curing regime, τc << t, the film thickness is written as 

 
ℎ(𝜙, 𝑡) ≈

ℎi

√1 +
4
3
𝜌𝑔ℎi

2

𝑅 ∫
1

𝜇(𝑡′)
𝑑𝑡′

𝑡

0

(1 +
𝜙2

10
), 

(16) 

or 

 
ℎ(𝜙, 𝑡) ≈

ℎi (1 +
𝜙2

10)

√1 +
4
3
𝜌𝑔ℎi

2

𝑅
(𝛼 − 1)(e𝛽τc − 1) + 𝜏c𝛽

𝛽𝜇0e𝛽𝜏c(𝛼 − 1)⏟                    
𝐈

−
4
3
𝜌𝑔ℎ𝑖

2

𝑅
𝜏𝑐
𝛼

𝜇0e𝛽𝜏c(𝛼 − 1)
𝑡1−𝛼

⏟                
𝐈𝐈

. 
(17) 

If the curing time τc is large enough so that the term I is much larger than unity and if the final 

time t is larger than τc so that term II becomes negligible, then the asymptotic solution for the film 

thickness is given by 

 
ℎf(𝜙) ≈ √

3𝜇0𝑅

4𝜌𝑔

𝛽𝑒𝛽𝜏c(𝛼 − 1)

(𝛼 − 1)(e𝛽𝜏c − 1) + 𝜏c𝛽
(1 +

𝜙2

10
) = √

3𝜇0𝑅

4𝜌𝑔

1

𝐾
(1 +

𝜙2

10
), 

 

(18) 
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with 𝐾 = (𝑘 − 𝑒−𝛽𝜏c)/𝛽 + 𝜏𝑐𝑒
−𝛽𝜏c/(𝛼 − 1), which is identical to equation (6) in the main text. 

The tuned final thickness by delayed pouring can be obtained by changing the bounds of the 

integral ∫
1

𝜇(𝑡′)
𝑑𝑡′

𝑡

0
 to ∫

1

𝜇(𝑡′)
𝑑𝑡′

𝑡

𝜏w
 in Supplementary Eq. (16), which results in 𝑘 = 𝑒−𝛽𝜏w . The 

velocity estimate then becomes 

 

𝑢(𝜙, 𝑡) ≈
3

8

𝛽(𝛼 − 1)𝜏c
𝛼

(𝛼 − 1)(e𝛽𝜏c − 1) + 𝜏c𝛽

𝑅

𝑡𝛼
(1 +

𝜙2

10
)

2

sin𝜙

=
3

8

𝜏c
𝛼

𝑒𝛽𝜏c𝐾

𝑅

𝑡𝛼
(1 +

𝜙2

10
)

2

, 

(19) 

where we highlight the fast temporal decrease of the velocity u ~ t -α  and its independence on the 

viscosity, density and gravity. 
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