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Patients and sample collection

We selected a 65-year-old male patient with 
multifocal primary liver cancer (2 HCC and 1 ICC) 
who received right tri-segmentectomy and suffered 
from postoperative intrahepatic recurrence (Figure 
1A; Supplementary Figures 1–2). The patient was 
HBV+HCV-, with no alcohol consumption or family 
cancer history, and no anticancer treatments were given 
before operation. Pre-operative alpha-fetoprotein was 
1,006.0 ng/ml, HBV DNA was 1.3 × 104 copy/ml and 
liver function was normal. WES was performed on all the 
tumors, peritumor liver and blood samples.

For mutation prevalence screen, fresh frozen HCC 
and matched non-cancerous liver samples were obtained 
from 60 patients treated between Jan 1 and Mar 31, 
2009 (Supplementary Table 8). The median duration of 
follow-up of this cohort was 51.0 months (range, 1.0–54.0 
months; SD, 15.9 months). Among these patients, 22 had 
multiregional spatially separated tissue samples (6 areas 
for each tumor) for evaluating intratumor variation in 
FAT4 mRNA levels. A total of 25 liver cancer cell lines 
were also used for mutation screen (Supplementary 
Table 7). For tissue microarray construction and 
immunohistochemical analysis, archived paraffin-
embedded HCC and paired non-cancerous liver tissues 
were obtained from 236 patients treated between Jan 2007 
and Dec 2007 (Supplementary Table 9), as previously 
described [1]. The median follow-up of this cohort was 
60.0 months (range, 3.0–74.0 months; SD, 25.5 months). 
All those patients received potentially curative resection 
for primary HCC at Zhongshan Hospital of Fudan 
University. The clinical data collection and postoperative 
surveillance according to a uniform guideline were 
described previously [1, 2]. Time to recurrence (TTR) 
and overall survival (OS) were the main end points as 
described previously [1, 2]. The study was approved by 
the Research Ethics Committee of Zhongshan Hospital, 
with written informed consent from each participant.

Exome capture and sequencing

Tumor tissues were analyzed by frozen section to 
assess neoplastic cellularity (Supplementary Figures 1C 
and 2B). Normal liver tissue was also analyzed by frozen 
section to confirm the presence of only non-neoplastic 
tissue. DNA isolation has been described previously [3], 
using DNeasy Blood and Tissue Kit (Qiagen). Whole-
exome sequencing of DNA samples from the patient 
was performed essentially as previously described [3, 4]. 
DNA libraries were prepared according to the Illumina 
library generation protocol. Each sample was tagged with 
a custom-designed unique 4-base-long index within the 

Illumina adaptor, pooled, captured by Agilent SureSelect 
Human All Exon V4 kits and sequenced using Illumina 
HiSeq 2000 system. Paired-end sequencing (2 × 101 bp) 
was carried out using standard Illumina protocols. All 
samples were sequenced to an average depth of 98.07 × , 
ranging from 78.05× (96.99% of targeted bases covered at 
≥ 10 ×) to 126.37× (98.03% of targeted bases covered at ≥ 
10 ×) (Supplementary Table 1).

Mutation and indel detection

All short reads were aligned to the NCBI human 
reference genome hg19 (GRCh37/hg19) using Burrows-
Wheeler Aligner (BWA) with default parameters [5]. 
SAMtools was used to remove non-uniquely mapped 
reads and possible PCR duplicates. SNPs and Indels 
were then called by the Genome Analysis Tool kit 
(GATK) HaplotypeCaller after local Indel realignment 
and base quality score recalibration [6]. The initial set 
S0 of somatic SNPs/Indels was defined as the SNPs/
Indels that were detected by GATK in the tumor or the 
TIS Exome-seq data but not in the blood data. This set 
S0 may still contain germline mutations since germline 
mutations may be detected in tumor/cirrhotic liver 
genomes but not in blood genome. To remove these 
mutations, for each mutation m in in S0, we calculated 
the local mapping error rate r (100bp neighborhood) 
of this mutation for the blood data and performed a 
binomial test to test if there is a mutation for blood with 
r as the success probability of the binomial distribution. 
If the P-value of this binomial test was less than 0.05, we 
viewed this mutation as a possible germline mutation and 
removed it from S0. We also removed mutations in S0 at 
which the read depth of blood was less than 10, because 
the mutation detection power of blood is insufficient at 
these positions and these mutations may still be germline 
mutations even though the corresponding P-value for 
blood is greater than 0.05.

We further removed any candidate somatic SNP 
in S0 who had any Indel in its 100bp neighborhood 
since these were likely to be false positives. Similarly, a 
candidate Indel in S0 was removed if there was another 
Indel in its 100bp neighborhood or there were at least 2 
short reads supporting other types of Indels at this position. 
At last, we applied a quality filtering criterion to filter the 
low quality mutations. If we directly use a threshold to 
filter, a common mutation may be filtered in one sample 
but not filtered in another sample, thus leading us to a 
biased result for our phylogentic analysis. Therefore, we 
instead used the following procedure to filter low quality 
calls. If a mutation was detected in multiple samples, we 
kept it in our final call set only if the maximum quality 
score of this mutation across all the detected samples 
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was greater than a threshold. The threshold was chosen 
as 80 for SNPs and 100 for Indels. After these filtering 
steps, we obtain a somatic mutation call set S (which is a 
subset of S0).

Since the mean read-depth and the level of normal 
DNA contamination varies across different samples, 
common mutations may be detected in one sample but not 
in another sample due to the detection power difference. 
We therefore developed an in-house method to detect 
somatic mutations more sensitively based on the somatic 
mutation call set S. Specifically, for each mutation m in 
S, suppose that its genomic location is s. We calculate the 
proportion of the mismatches (the mismatches that are 
the same as the mutation m are not counted) in a 100bp 
neighborhood of s for each sample. Then, for a sample in 
which the mutation m was not detected, we performed a 
Binomial test to test if there was such a mutation at the 
genomic positions. If the P-value of this test was less than 
1 × 10–4, we set this mutation as a candidate mutation for 
the sample. With this method, we were able to detect more 
mutations and there were more overlaps between mutation 
call sets of different samples, especially for the HCC-B 
tumors. We called this set of mutations Se (the call set S 
was a subset of Se).

Allelic specific copy number variation 
(ASCNV) analysis

In this section, we refer tumor genome to tumor 
or cirrhotic liver genome. The Allelic Specific Copy 
Number Variation (ASCNV) analysis was based on the 
heterozygous SNPs detected with the blood data. For each 
autosomal heterozygous SNP s in blood (s = 1, ⋯ , S ),  
let NAs and NBs be the number of short reads of blood 
supporting allele As and allele Bs, respectively. Similarly, 
define TAs and TBs. be the corresponding number of short 
reads for a tumor data. Assume that CAs and CBs be the 
copy number of the allele As and Bs in the tumor genome. 
Let Φ be the ploidy number of the tumor/cirrhotic liver 
genome and r be the proportion of tumor or cirrhotic 
liver DNAs in the sequenced library (1 − r is the level of 
normal DNA contamination). We assume that the copy 
numbers of allele A and B for blood is 1. This assumption 
should hold for almost all germline heterozygous SNPs. 
Let RN and RT be the mean read depth of blood (normal) 
and tumor genome. Then, we have the mean of the ratio 
Ta ∕ RT

Na ∕ RN

 should equal to μa =
rCa + 1− r

rФ∕2 + (1− r)
 (a = As, Bs).  

The ratio Ya =
Ta ∕ RT

Na ∕ RN

 can be viewed as following a 

normal distribution N(μa, σ2
Ca

) , where we assume that the 
variance σ2

Ca
 only depends on the allelic copy number Ca

(a = As, Bs). Then, the joint likelihood of Ys = (YAs, YBs) 
can be written as ϕ 1yAs

|μAs, σCAs 2ϕ 1yBs|μBs, σCBs 2 , where 
ϕ 1x| μ, σ2 2 = 12πσ2 2  − 1∕   2e − 1x − μ22∕(2σ2) is the density function 
of the normal distribution N 1μ, σ2 2 .

To estimate the parameters in this model, we first 
performed segmentation with the BIC-seq algorithm (37) 
based on the read-depth data at the heterozygous SNPs. 
Suppose that we obtain K segments I1, ⋯ , IK. We assume 
that the copy numbers of the two alleles at different 
positions remain constant in a segment. However, given 
heterozygous SNPs s in a segment, we do not know what 
the haplotype looks like. Thus, we have the new likelihood

qk

k=1
q
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2
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) d ,
where Ckj is the copy number of the jth haplotyp at 

the kth segment and µkj =
rCkj + 1− r

rФ∕2 + (1− r)
. We use Bayesian 

method to estimate the parameters. The prior of the 
purity parameter r is chosen as the uniform distribution 

and the prior of the parameter Ф' = 1

rФ∕    2 + 1− r
 >  0  is 

chosen as a truncated normal distribution (truncation at 
0). The priors for σ2

Ckj ( j = 1, 2) are chosen as inverse 
gamma distributions. With these priors, we can use Gibbs 
sampler to estimate the parameters r, Ф and the unknown 
copy numbers Ckj. For the ICC genomes and cirrhotic 
liver genome, BIC-seq segmentation results showed that 
there was almost no copy number change and we fixed 
their ploidy number Ф as 2 and used VAF to estimate 
the purity parameter r (r is estimated as the mean VAF 
of nonsynonymous SNPs). The copy numbers were then 
estimated with this Bayesian model.

Altered functional category analysis

We used DAVID [7] to analyze the enriched 
functional categories of somatic mutations in the tumor 
genomes. The nonsynonymous somatic mutations in the 
call set S of each tumor (HCC-A, HCC-B and ICC-C) were 
used for this analysis. Before performing the enrichment 
analysis, we first compared the nonsynonymous mutations 
with the COSMIC database. We only kept a gene for the 
enrichment analysis if it had a nonsynonymous mutation 
and there were more than 2 samples in the COSMIC 
database with a mutation at this gene. The category we 
compared with is the SP_PIR_KEYWORDS as provided 
by DAVID.

Statistical analysis of VAFs and the hierarchical 
tree construction

The confidence regions of mean VAFs of the 
IMs against HCC-A tumors were obtained as follows. 
For each class of mutations (e.g. IM1 only mutations 
or IM1 and HCC-A1 mutations), we calculated the 
mean μ∧  and variance-covariance o

∧
 of VAFs of these 
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mutations. The 99% confidence region was set as 

e z ∈ R2| 1z − μ̂ 2 ta^   − 1 1z − μ̂ 2  ≤  c f , where c was the 

constant such that P 1"X2 + Y2 ≤  c 2 = 0.99  with 
(X, Y)  having a standard normal distribution. Here, we 
only used mutations whose read depths across the samples 
were at least 20. The hierarchical tree in Figure 2E was 
constructed by the function hclust in R.

Verification of mutations using sanger 
sequencing

To evaluate the performance of the variant calling 
algorithm, 218 of the somatic SNVs identified in whole-
exome sequencing were selected for validation using 
Sanger sequencing (primer sets listed in Supplementary 
Table 10), and we confirmed 197 (90.4%) somatic SNVs. 
The coding exons FAT4 gene were further screened using 
primer sets listed in Supplementary Table 11 in the 60 
HCC samples and matched controls, as well as 25 HCC 
cell lines. Sanger sequencing primers were designed using 
Primer3 software (http://frodo.wi.mit.edu/). All mutations 
identified in tumors were confirmed by independent PCR 
and Sanger sequencing in the specific tumors and their 
paired normal tissue to determine their somatic nature.

Quantitative reverse transcription PCR  
(qRT-PCR)

Total RNA isolation, purification and reverse 
transcription were conducted as previously described [2]. 
Real-time RT-PCR was performed using a SYBR-Green 
PCR master mix (Invitrogen) and ABI PRISM 7500 
Sequence Detection System (Applied Biosystems), according 
to the manufacturers’ instructions. The primers used were: 
FAT4 5′ AGGCACAAATGGACAGGTTC 3′ (forward) and 
5′ AAGGTTTAGCGACAGTGATGG 3′ (reverse); TBP 
5′ CTCTCACAACTGCACCCTTG 3′ (forward) and 5′ 
ATCCCAGAACTCTCCGAAGC 3′ (reverse). All samples 
were performed in triplicate and TBP values were used to 
normalize gene expression using 2-∆CT method.

Tissue microarray and immunohistochemistry

Tissue microarrays were constructed as previously 
described [1]. Core samples were obtained from 
representative regions from each tumor on hematoxylin 
and eosin staining. Duplicate 1-mm cores were taken 
from different areas of the same tissue block for each case 
(tumor tissue and matched noncancerous liver tissue, i.e., 
a total of four cores). Tissue microarrays were constructed 
using an arraying machine (Beecher Instruments).

Immunohistochemistry for FAT4 was performed as 
previously described [2, 8]. Briefly, 4-μm sections were 

deparaffinized and subjected to antigen retrieval (citrate 
buffer, pH = 6.0). Sections were then incubated for 30 
min with rabbit polyclonal antibody to FAT4 (1:150 
dilution, Cat# NBP1–78381, Novus Biologicals). Reaction 
products were visualized with 3, 3′-diaminobenzidine 
tetrahydrochloride and counterstained with hematoxylin. 
FAT4 immunostaining intensities were semiquantitatively 
scored as: 0, negative; 1, weak; 2, moderate; 3, strong by 
two observers independently, and comparisons were made 
between tumor/normal pairs.

Cell culture and transfection

The human HCC cell lines, SNU-449 and 
SMMC-7721, were maintained in DMEM (Invitrogen) 
supplemented with 10% FBS and penicillin/streptomycin. 
Cell line authentication was done essentially as we 
previously described [9].

For shRNA mediated knockdown of FAT4, six19-
nucleotide sequences targeting gene FAT4 (Supplementary 
Table 12) were selected using the BLOCK-It siRNA 
design program (Invitrogen). A control sequence 
(5′-TTCTCCGAACGTGTCACGT-3′) was used. Then the 
fragments were subcloned into pLVTH (Addgene) vector 
using the restriction sites MluI-ClaI. Lentiviral stocks were 
prepared by co-transfecting HEK-293T cells with shRNA 
and standard virus packaging systems as we previously 
described [2, 10] . Target cells were infected with filtered 
lenti-virus plus 6 μg/mL polybrene (Sigma-Aldrich) to 
generate stable cell lines. Two sequences (shRNA1 and 
shRNA2) with the highest efficiency of knockdown were 
selected for subsequent experiments.

For over-expression of FAT4, artificial TALE 
transcription activators TALE-VP64 Vectors based on 
pXanthoTMV.basic.puro using for FAT4 overexpression 
were purchased (Taileng Biotech. Inc., Shanghai, China). 
The pXanthoTMV.basic.puro vector is complementary 
to the TAL Effector Kit 2.0 (Addgene), from which the 
RVD modules were selected to assemble the TALE-
VP64 by a Golden-Gate method. The expression of 
TALE-VP64 activators are driven by a ubiquitous CAG 
promoter while a puromycin resistant gene is coexpressed 
by a IRES element (Internal Ribosome Entry Site) under 
the same promoter. Five FAT4 TALE-VP64 activators 
were designed targeting around the transcription start 
site (TSS) of FAT4 (Supplementary Table 13). A TALE-
VP64 activator was synthesized as the control vector 
with binding sites on EGFP. The EGFP-TALE-VP64 has 
a RVDs array as NG-HD-NI-HD-HD-NN-NN-NN-NN-
NG- NN-NN-NG-NN-HD-HD-HD-NI-NG, targeting 
at TTCACCGGGGTGGTGCCCAT. Each of designed 
TALE-VP64 vectors was transfected into SNU-449 and 
SMMC-7721 cells in 6 Well Plate with lipofectamine 
2000. Dozens of clones appeared after 4 weeks of 
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selection by 2ug/ml of puromycin. One vector that resulted 
in the highest level of FAT4 expression was selected for 
subsequent experiments.

Proliferation, colony formation and migration 
assays

For proliferation assay, HCC cells were seeded in 96-
well plates seeded at 250–500 cells/well according to the 
character of each cell line. Cell viability and growth was 
determined by Cell-Counting Kit (CCK)-8 (Dojindo), reading 
absorbance at 450 nm according to the manufacturer’s 
instructions and as previously described [2, 11].

For colony formation assay, cells were seeded 
into 6-well plates at a concentration of 300–600 cells/
well and cultured at 37°C for 12–14 days according to 
the character of each cell line. Then, the cells were fixed 
with 100% methanol and stained with 0.1% crystal violet. 
Megascopic cell colonies were counted by Image-Pro Plus 
5.0 (Media Cybernetics).

In vitro migration assay was performed in chamber 
of 8-μm Transwell inserts (BD Falcon) essentially as 
described [2]. 5 × 10 [4] cells were placed into the top 
chamber of each insert. According to the character of the 
used cell lines, cells that migrated were fixed and stained 
in dye solution containing 0.1% crystal violet and 20% 
methanol after 18–28 hours of incubation at 37°C. The 
number of cells that had migrated was counted using an 
IX71 inverted microscope (Olympus Corp.).

All results are representative of three independent 
experiments performed in triplicate.

Western blot

Protein extracts were processed for protein blotting 
using established methods as described [2]. The primary 
antibodies used were mouse anti-human FAT4 (1:500 
dilution, Cat# ab130076, Abcam) pAb. Different amount 
of protein samples were loaded in the context of FAT4 
knockdown (30 μg/well) or over-expression (20 μg/well). 
Horseradish peroxidase (HRP)-conjugated secondary 
antibodies and enhanced chemiluminescence (ECL) 
reagents were from Amersham. Beta-actin (1:2000 
dilution, Sigma-Aldrich) was used as the loading control.

Protein structural analysis

Structure models for all wild type domains of FAT4 
were predicted by I-TASSER server (http://zhanglab.ccmb.
med.umich.edu/I-TASSER/) with default parameters. The 
model with the best score for each domain was selected 
as the wild type structural model. Structural models for 
mutants were constructed by using the corresponding 
protocol of the Discovery Studio 2.5. Secondary structure 
intrinsic disordered region prediction was performed by 
using the PSIPRED and the DISOPRED3 server (http://

bioinf.cs.ucl.ac.uk/psipred/) with default parameters, 
respectively. Differences in Folding free energy between 
the wild type and the mutants were calculated by FoldX 
software (http://foldx.crg.es), helping to judge how the 
mutants can influence the protein structure. Figures were 
prepared using PyMOL (http://www.pymol.org).
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Supplementary Figure S1: Selection and morphologic features of one patient with multifocal primary liver cancer. A. 
Pre-operative MRI image showing three separated tumors within the liver. Orange arrow, HCC-A; Dark red arrow, HCC-B; Green arrow, 
ICC. B. Gross features of the resected three primary liver tumors. Scale bar, 1cm. C. Histological features of each sub-regoin from the three 
tumors by H.E. staining.
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Supplementary Figure S2: Detection of two intrahepatic recurrent tumors in the patient 5 months after operation. A. 
CT scan image showing the two recurrent tumors within the liver. Orange arrow, recurrent tumor IM1; Blue arrow, recurrent tumor IM2. B. 
Histological features (H.E. staining) of the two recurrent tumors obtained by percutaneous needle biopsy.



www.impactjournals.com/oncotarget/ Oncotarget, Supplementary Materials 2015

Supplementary Figure S3: Intratumor genetic heterogeneity among the three primary tumors. A. The Venn diagram of 
somatic mutations within the HCC-A, HCC-B and ICC sub-regions. B, C. and D. The VAF heatmaps of the HCC-A, HCC-B and ICC 
tumors, respectively.
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Supplementary Figure S4: Relationship between the recurrent tumors and the primary tumors. A. The Venn diagram of 
somatic mutations among HCC-A sub-regions and two recurrent tumors. A large fraction of mutations are shared by HCC-A and IM tumors, 
and both HCC-A and IM tumors have considerable amount of private mutations. B. The VAF heatmap of the HCC-A sub-regions and the 
two intrahepatic recurrent tumors. C, D. The scatter plots of VAFs at mutations detected in HCC-A1 and IM1 (C) and in HCC-A1 and IM2 
(D) The mutations clearly clustered into 3 classes: the mutations only discovered in the IMs, the mutations only discovered in HCC-A1, 
and the mutations discovered in both IM and HCC-A1. For example, in (C), the crosses correspond to mutations detected in IM1 but not in 
HCC-A1 by the in-house method. The shaded regions are the 99% confidence regions of the mean VAFs of each class. The mutations are 
labeled by the in-house method. E–H. Similar to (C,D) but for HCC-A2 and HCC-A3 versus IM1/2.
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Supplementary Figure S5: Representative Sanger sequencing trace files of FAT4 mutations detected in HCC-A, 
HCC-B and IMs. Three HCC-A sub-regions and IM1/2 had the c.G2530A mutation, while three HCC-B sub-regions had the c.A14804C 
mutation.
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Supplementary Figure S6: Immunostaining of FAT4 in HCC-A, HCC-B and ICC. There were no significant differences of 
FAT4 expression levels in HCC-A and HCC-B (Score 1), however, the expression level in ICC (Score 2) is higher than that in HCC.
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Supplementary Figure S7: Kaplan-Meier curves showing differences in recurrence and survival in HCC patients (n 
= 60), according to the mutation status of FAT4 (log-rank test). The presence of FAT4 mutations significantly correlated with 
increased recurrence.
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Supplementary Figure S8: Bar plot showing somatic mutations and copy number altration (CNA) in FAT4 across 
different tumor types analyzed from cBioPortal database (http://www.cbioportal.org/public-portal). In hepatocellular 
carcinoma cases form the TCGA database, FAT4 was mutated in 13.3% (26 cases) and deleted in 0.5% (1 cases) of 196 cases. In hepatocellular 
carcinoma cases form the AMC analysis (Hepatology 2014), FAT4 was mutated in 3.9% (9 cases) of 231 cases.
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Supplementary Figure S9: Summary of relative FAT4 mRNA expression among 910 human cancer cell lines from 
35 cancer types derived from CCLE database (http://www.broadinstitute.org/ccle). FAT4 mRNA level in hepatocellular 
carcinoma ranked as the top 9 among 35 cancer types. Number in parentheses indicates the cell line number of each cancer.
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Supplementary Figure S10: Summary of relative FAT4 mRNA level among 9 human cancers with paired tumor 
and normal samples analyzed from TCGA database (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). FAT4 mRNA 
expression was significantly down-regulated in hepatocellular carcinoma A. lung adenocarcinoma B. lung squamous cell carcinoma 
C. prostate adenocarcinoma D. renal papillary cell carcinoma E. chromophebe renal cell carcinoma F. breast carcinoma G. colon 
adenocarcinoma H. and bladder carcinoma I. Paired sample’s t test.
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Supplementary Figure S11: Statistics for multiregional mRNA expression derived from 22 HCC. For each tumor, 6 
spatially separated areas were sampled. Bar plots showed tumor sub-regional FAT4 mRNA expression levels relative to paired 
normal liver tissues. In case of co-existence of up- and down- regulation of FAT4 within a tumor compared to paired normal tissue, 15% of 
increase or decrease than normal tissue was defined as intratumor heterogeneous expression. ↑, up-regulation of FAT4; ↓, down -regulation 
of FAT4.
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Supplementary Table S1: Summary of whole-exome sequencing data

See Supplementary File 1
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Supplementary Table S2: Summary of somatic substitutions and indels in the liver and tumor exomes

See Supplementary File 2
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Supplementary Table S3: The list of non-synonymous somatic substitutions and small indels in coding and noncoding 
regions. 

See Supplementary File 3
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Supplementary Table S4: Regions with copy number variations. 

See Supplementary File 4
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Supplementary Table S5: Pathway enrichment of the genes with nonsynonymous somatic alterarions in coding regions 
of tumor exomes.

See Supplementary File 5
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Supplementary Table S6: Somatic mutations of FAT4 in HCC samples and cell lines

See Supplementary File 6
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Supplementary Table S7: HCC cell lines used in this study

See Supplementary File 7
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Supplementary Table S8: Clinical characteristics of 60 HBV related-HCC patients for mutation prevelance screen

See Supplementary File 8
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Supplementary Table S9: Clinical characteristics of 236 HBV related-HCC patients for immunostaining. 

See Supplementary File 9
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Supplementary Table S10: Primer sets used for PCR validation of somatic mutations. 

See Supplementary File 10
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Supplementary Table S11: List of PCR primers used for target sequencing of FAT4

See Supplementary File 11
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Supplementary Table S12: Selection of anti-sequence for establishment of FAT4 shRNA lentivirus

See Supplementary File 12
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Supplementary Table S13: Selection of TALE-VP64 sequence for establishment of endogenous FAT4 overexpression 
in HCC cells

See Supplementary File 13


