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1 Derivation of ELNPM
1.1 Full Model
We examine the full kinetics implied by the rate equations in Section 2.2, where
we consider each possible configuration of bound Hsp104 separately. We define
ui(b) to be the density of aggregates of size i with Hsp104 configuration b, where
0 ≤ b < 2i−1 and b’s binary expansion is taken to reflect the states of possible
fragmentation sites: a 0 appearing in the location of an unbound site, and a 1
in the location of a bound site. Let cb denote the Hamming weight of b, or the
number of 1’s appearing in the binary expansion of b. Finally, we assume that
fragmentation occurs at a rate proportional to the amount of bound Hsp104
and that the resulting daughters are uniformly distributed amongst the possible
configurations. Thus, for ui(b), fragmentation occurs with rate γcb into daughter
aggregates with probability 1/cb. Finally, let b1 ⊗ b2 denote the bit-wise and of
integers b1 and b2 and δ(x) = 1 if x = 0 and 1 otherwise. Then,

dum(b)

dt
= −2βs(t)um(b) + βs(t)

[
um−1,(b)δ(b⊗ 2m−2) + um−1,(b/2)δ(b⊗ 1)

]
− (γcb + µ0)um(b)

+ γ

∞∑
i=m+1

2i−m−1−1∑
k=0

[
ui(b+2m−1+2mk) + ui(k+2i−m−1+2i−mb)

]

− konh(t)

(m− 1 − cb)um(b) −
∑

b′ s.t.
cb′=cb−1
b′⊗b=b′

um(b′)

+ koff


∑

b′ s.t.
cb′=cb+1
b′⊗b=b

um(b′) − cbum(b)

 .
(1)

We now sum over every b < 2i−1 such that cb = j, only assuming symmetry
in the aggregate configuration densities (ui(b) = ui(b′) where b′ is the reversed
bitstring of b). We write umn =

∑
b s.t. cb=n

um(b) and carefully count bitstrings
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and simplify to obtain

dumn

dt
= −2βs(t) [umn − um−1,n] − (γn+ µ0)umn

+ 2γ
∞∑

i=m+1

i−(m−n)∑
j=n+1

∑
b s.t.

b<2m−1

cb=n

∑
b′ s.t.

b′<2i−m−1

cb′=j−n−1

ui(b+2m−1+2mb′)

− konh(t) [(m− n− 1)umn − (m− n)um,n−1] + koff [(n+ 1)um,n+1 − numn] .
(2)

We simplify the remaining recovery term with a claim: since conversion
effectively biases Hsp104 configurations towards the center of the aggregate, a
relatively fast enzyme off-binding will restore the configuration distribution to
approximate uniformity. Let us proceed by formally assuming ui(j) = ui(j′) if
cj = cj′ . Then (2) reduces to

dumn

dt
= −2βs(t) [umn − um−1,n] − (γn+ µ0)umn + 2γ

∞∑
i=m+1

i−(m−n)∑
j=n+1

(
m−1

n

)(
i−m−1
j−n−1

)(
i−1

j

) uij

− konh(t) [(m− n− 1)umn − (m− n)um,n−1] + koff [(n+ 1)um,n+1 − numn] .
(3)

1.2 Reduced Equations
Equipped with these assumptions, let us define the moments of our aggregate
density:

η =
∞∑

i=n0

i−1∑
j=0

uij , z =
∞∑

i=n0

i−1∑
j=0

iuij , zb =
∞∑

i=n0

i−1∑
j=0

juij . (4)
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Then,

ds

dt
= αs − µss(t) − 2βs(t)η(t) + γ(n0 − 1)n0

∞∑
i=n0

i−1∑
j=1

j

i− 1uij(t) (5)

dh

dt
= αh − µhh(t) − konh(t)[z(t) − η(t) − zb(t)] + (koff + γ)zb(t)

+ γ(n0 − 1)(n0 − 2)
∞∑

i=n0

i−1∑
j=1

j(j − 1)
(i− 1)(i− 2)uij(t)

(6)

dη

dt
= −µ0η(t) + γzb(t) − 2γ(n0 − 1)

∞∑
i=n0

i−1∑
j=0

j

i− 1uij(t) (7)

dz

dt
= 2βs(t)η(t) − µ0z(t) − γ(n0 − 1)n0

∞∑
i=n0

i−1∑
j=0

j

i− 1uij(t) (8)

dzb

dt
= −(µ0 + γ + koff)zb(t) + konh(t)[z(t) − η(t) − zb(t)]

− γ(n0 − 1)(n0 − 2)
∞∑

i=n0

i−1∑
j=1

j(j − 1)
(i− 1)(i− 2)uij(t)

(9)

While simplified, we still lack moment-closure. However, we note that the
unclosed terms are of a very particular form, motivating a discrete transforma-
tion of uij . Define

vmn =
m−1∑
j=n

(
j
n

)(
m−1

n

)umj . (10)

Then,

vi,0 =
i−1∑
j=0

uij , vi,1 =
i−1∑
j=1

j

i− 1uij , vi,2 =
i−1∑
j=2

j(j − 1)
(i− 1)(i− 2)uij , (11)

and more generally,

dvmn

dt
= −2βs(t)

[
vmn(t) −

(
1 − n

m− 1

)
vm−1,n

]
− µ0vmn(t)

− γ(m− n− 1)vm,n+1(t) + 2γ
∞∑

i=m+1
vi,n+1(t)

− n [(konh(t) + koff + γ)vmn(t) − konh(t)vm,n−1(t)] .

(12)

This recurrence is 2nd order in n, so we see that it is ill-posed. We can argue
1 boundary condition without additional assumptions: since vm,n+1 ≤ vmn by
construction, and prion aggregates biologically must have an upper size limit,
we have limn→∞ vmn = 0. We are now left to find 1 more condition to make
the problem well-posed.
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1.3 Approximation
We perform the same non-dimensionalization as in Equations (16a)-(16e), writ-
ing again ω(t) = z(t)/η(t) − n0 and p(t) = zb(t)/[z(t) − η(t)]:

s′ = As(1 − s) −Bsη + (n0 − 1)n0

∞∑
i=n0

vi,1 (13)

h′ = Ah(1 − h) + r

[
(ω + n0 − 1)(k−1p− k1h[1 − p])η + (n0 − 2)(n0 − 1)

∞∑
i=n0

vi,2

]
(14)

η′ = (−A0 + p(ω + n0 − 1))η − 2(n0 − 1)
∞∑

i=n0

vi,1 (15)

ω′ = Bs− p(ω + 1)ω + (n0 − 1)(2ω + n0)
(

1
η

∞∑
i=n0

vi,1 − p

)
(16)

p′ = k1h(1 − p) − k−1p+ p2 − Bsp

ω + n0 − 1 + (n0 − 1)(n0 − 2)
pη(ω + n0 − 1)

(
p

∞∑
i=n0

vi,1 −
∞∑

i=n0

vi,2

)
.

(17)

Written in this way, it becomes clear that enforcing
∑∞

i=n0
vi,n+1 = p

∑∞
i=n0

vi,n

will yield moment closure. Interpreting uij/η as a probability mass and (I, J)
as a joint random variable modeling aggregate size and bound Hsp104, we write
p = E[J ]/E[I − 1] and ultimately understand the nature of our approximation
to be the validity of the approximations

E
[

J

I − 1

]
≈ E[J ]

E[I − 1] , (18)

and

E
[

J(J − 1)
(I − 1)(I − 2)

]
≈
(

E[J ]
E[I − 1]

)2
. (19)

Consider the 2nd order Taylor expansion of an arbitrary function f(x, y)
about (x̄, ȳ):

f(x, y) ≈ f(x̄, ȳ) + (x− x̄)fx(x̄, ȳ) + (y − ȳ)fy(x̄, ȳ)

+ 1
2
[
(x− x̄)2fxx(x̄, ȳ) + 2(x− x̄)(y − ȳ)fxy(x̄, ȳ) + (y − ȳ)2fyy(x̄, ȳ)

]
(20)

Treating X and Y as random variables and x̄ and ȳ as their means, then

E[f(X,Y )] ≈ f(x̄, ȳ)+1
2 (fxx(x̄, ȳ)Var[X] + 2fxy(x̄, ȳ)Cov[X,Y ] + fyy(x̄, ȳ)Var[Y ]) .

(21)
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In our case X = J , x̄ = zb/η, and Y = I − 1, ȳ = z/η − 1. Let ū = z/η; for
Approximation (18), we have f(x, y) = x/y and

E
[

J

I − 1

]
= p+ 1

ū2 (pVar[I − 1] − Cov[J, I − 1]) +O(1/ū3). (22)

For Approximation (19), we have f(x, y) = x(x−1)
y(y−1) and

E
[

J(J − 1)
(I − 1)(I − 2)

]
= p2−p(1 − p)

ū
+Var[J ] − 4pCov[J, I − 1] + 3p2Var[I − 1] − 2p(1 − p)

ū2 +O(1/ū3).

(23)
Assuming the variances are dominated by the average aggregate size, we have

error terms in the first approximation of O(1/ū2) and O(1/ū) in the second;
when multiplied against the terms’ coefficients, we obtain O(1/ū2) in either
case.
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