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Appendix A.1

In [1]-[2] and [3] two di¤erent models were proposed, to take into account the
responses FU and FU+V to concentrations of an odorant U and of a binary
mixture U + V , respectively. In this appendix we discuss some features of
those models, in view of the empirical properties mentioned in the main text.
To turn those experimental qualitative descriptions into rigorous mathematical
de�nitions, one should take into account that they involve terms that are not
necessarily consensual in the literature, or that cannot be easily expressed into
mathematical relations. For this reason we will focus the analysis on the three
basic behaviours of suppression, inhibition and synergy (see [5],[2]).
In most cases, the responses FU , FV to single odorants, and FU+V to the

mixture, are compared at the same concentration. This means that if a mix-
ture is performed at a certain ratio r > 0, then is U = rV , and the response
FU+V (U; V ) = FU+V (rV; V ) is relative to the concentration C := U + V =
(1 + r)V . Henceforth, it is compared with the responses FU (C) and FV (C). In
this context, we say that inhibition happens when

FU+V (U; V ) < minfFU (C); FV (C)g ;

synergy when
FU+V (U; V ) > maxfFU (C); FV (C)g;

and suppression when FU+V (U; V ) is (strictly) intermediate between FU (C),
FV (C). Hence we ignore the comparison of FU+V (U; V ) with the sum FU (U)+
FV (V ).
The above interpretation will mainly be used in Appendix A3. In the main

text we explain that a slightly di¤erent interpretation is also worthy of consid-
eration. It basically consists in considering V = C=(1 + r) in place of C, in the
response to a mixture. These interpretations do not con�ict in the asymptotic
region.

� Rospars et al. models
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In [1] and [2], the authors proposed the following models

FU =
FMU

1 +
�
KU

U

�n ; FU+V (U; V ) =
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�n (1)

where n is a Hill coe¢ cient, KU ;KV ; FMU and FMV are constants (see
[2]).

� Cruz and Lowe models
In [3] the authors, instead of (1), proposed the following models
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1
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1 +
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3775
n ;

(2)
where n is a Hill coe¢ cient, Fmax is the maximal response, �U and �V are
the e¢ ciencies of activation of transduction by each odorant.

Equations (1)2 and (2)2 are both functions of two compounds in concen-
tration U and V: However, following the experimental protocol, it is useful to
analyze them under the condition

U = rV; (3)

where r is a positive constant.

Rospars et al. binary mixture model
In [2] is proved that Eq. (1)2 becomes

FU+V (rV; V ) =
FMp

1 +
�

Kp

(1+r)V

�n ; FU+V (M) =
FMp

1 +
�
Kp

M

�n ; (4)

where M = U + V and

FMp =
FMUr

nKn
V + FMVK

n
U

(Kn
U + r

nKn
V )

; Kp = (1 + r)KUKV
n

s
1

rnKn
V +K

n
U

: (5)

Then, FMp is the asymptotic value of function FU+V (rV; V ) ; the concentration
of V (resp. of M) at half maximum response FMp=2 is Kp= (1 + r) (resp. Kp).
Moreover, the asymptotic value of function FU+V is always located between the
single-odorant curves. In fact, from (5) for all r we obtain

min (FMU ; FMV ) � FMp � max (FMU ; FMV ) : (6)
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Cruz and Lowe binary mixture model
Analogously, if the concentrations U and V of the odorants are such that

U = rV Eq. (2)2 becomes

FU+V (U; V ) = FU+V (rV; V ) =
Fmax

1 +
1

��n

�
1 +

�K

V

�n (7)

where the parameters �� = �� (r; �
U
; �V ;KU ;KV ) ; �K = �K (r;KU ;KV ) assume

the form

�� =
�UrKV + �VKU

KU + rKV
; �K =

KUKV

KU + rKV
: (8)

In this case, the asymptotic value of function FU+V (rV; V ) is

Fmax

1 +
1

��n

=
��nFmax
1 + ��n

; (9)

and the concentration of V at half maximun response
��nFmax
2 (1 + ��n)

is

�K
n
p
2 + ��n � 1 (10)

From (8) we obtain

min (�U ; �V ) � �� � max (�U ; �V )

and owing to (9) for all r we have

min

0BB@ Fmax

1 +
1

�nU

;
Fmax

1 +
1

�nV

1CCA � Fmax

1 +
1

��n

� max

0BB@ Fmax

1 +
1

�nU

;
Fmax

1 +
1

�nV

1CCA : (11)

Then, owing to (6) and (11), both the models (4) and (7) cannot reproduce
mixtures exhibiting synergy or inhibition in their maximal response.
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Appendix A.2

Model for binary mixture

In order to �nd a model able to describe each type of interaction among two
single odorant it is necessary to expand the space of allowed Hill functions. To
this purpose, we assume that the Hill coe¢ cient in the mixture model (2)2 can
depend on the odorants. Note that there are experimental �ndings showing that
the response of the same OSN to di¤erent odorants may exhibit di¤erent Hill
coe¢ cients (see [7]). Then, starting from Eq. (2)1 for the odorants U and V

FU (U) =
Fmax

1 +
1

�nU
U

�
1 +

KU

U

�nU ; FV (V ) =
Fmax

1 +
1

�nV
V

�
1 +

KV

V

�nV ; (12)

we propose the following model for binary mixture

FU+V (U; V ) =
Fmax

1 +

2664 1 +
U

KU
+
V

KV

�
U

U

KU
+ �

V

V

KV

3775
nU+V (13)

where

nU+V =
nU�UKV U + nV �VKUV

�UKV U + �VKUV
: (14)

Equation (13) is a function of two compounds in concentration U and V: How-
ever, if U = rV where r is a constant, we obtain

Fmax

1 +
1

���n

�
1 +

�K

V

��n (15)

where the parameters �� = �� (r; �
U
; �V ;KU ;KV ) ; �K = �K (r;KU ;KV ) and �n =

�n (r; nU ; nV ; �U ; �V ;KU ;KV ) assume the form

�� =
�UrKV + �VKU

KU + rKV
; �K =

KUKV

KU + rKV
; �n =

rnU�UKV + nV �VKU

r�UKV + �VKU
: (16)

We note that if nU = nV ; then (13) and (15) become (2)2 and (7), respec-
tively.
The asymptotic value of function (15) is

Fmax

1 +
1

���n

=
���nFmax
1 + ���n

; (17)

and the concentration of V at half maximun response
���nFmax
2 (1 + ���n)

is

�K
�n
p
2 + ���n � 1

(18)
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Model for mixture of N odorants

Equation (13) can be easily generalized to a model for mixture of N odor-
ants

FMIX (U1; :::; UN ) =
Fmax

1 +

266664
1 +

NX
i=1

Ui
KUi

NX
i=1

�
Ui

Ui
KUi

377775
nMIX

(19)

where

nMIX =
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i=1

nUi�Ui
Ui
KUi

NX
i=1

�
Ui

Ui
KUi

: (20)

Similarly, setting for all i 2 f1; :::; N � 1g ; Ui = riUN where ri are positive
constants, we obtain

FMIX (r1UN ; :::; UN ) =
Fmax

1 +
1

�nMIX

MIX

�
1 +

KMIX

UN

�nMIX
(21)

where

�MIX =

N�1X
i=1

ri
KUi

�
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+

1

KUN

�
UN

N�1X
i=1

ri
KUi

+
1

KUN

; KMIX = 1=

 
N�1X
i=1

ri
KUi

+
1

KUN

!
;

nMIX =

N�1X
i=1

nUi�Ui
ri
KUi

+ nUN �UN
1

KUN

N�1X
i=1

�
Ui

ri
KUi

+ �
UN

1

KUN

(22)
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Appendix A.3: Analysis of the proposed mixture
model

For applicative purposes, one might be interested in knowing a priori for which
mixtures our model (13), (14) predicts inhibition, synergy or suppression, as
described at the beginning of Appendix A1. Here we give details for the
whole range of concentrations; namely, we look for the three ranges of values
of U;KU ; �U ; nU ; V;KV ; �V ; nV , for which those qualitative behaviours occur.
This problem obviously consists in solving (rather cumbersome) inequalities
that arise by comparing the values FU+V (U; V ), FU (C), FV (C) given by (13)
and (12) with C := U + V .
To use

r := U=V; C = U + V

instead of the pair U; V is perhaps more meaningful and mathematically simpler.
Because of the inverse formulas

U =
rC

1 + r
; V =

C

1 + r

we have no loss, nor substantial bias of information.
Note also that if one gets nU ; nV multiplied by the same (positive) constant,

the behaviour stays the same. Hence the ranges can be described using the
parameter

� := nU=nV

instead of the pair (nU ; nV ). When nU = nV we have the Cruz and Lowe model,
which has already been discussed. Hence we assume nU 6= nV . Moreover, to
avoid an unnecessary long description, we assume that U denotes the odorant
with the least Hill coe¢ cient (exponent n):

nU < nV ;

that is, � < 1. Hence, to test parameters against the list of cases we are going
to display, one should keep in mind that if nU > nV , then U and V have to be
exchanged (either in the data or in the list).
It will also be convenient to set

bU :=
KU + C

�UC
; bV :=

KV + C

�V C

and to consider the function y = x + x lnx. This function has an absolute
minimum (x; y) = (exp(�2);� exp(�2)), and it is increasing for x � exp(�2).
We shall denote by '(y) the (partial) inverse de�ned for y � � exp(�2) (with
values x � exp(�2)). To better understand the cases in the list below, one
should take into account that y > '(y) > 1 when y > 1 and y < '(y) < 1 when
y < 1.
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For the sake of brevity, we shall disregard some edge cases: in the list below
we shall always use strict inequalities and we also assume

�VKUKV (KU + C) 6= �UKUKV (KV + C)

(that is, FU+V (rC=(1 + r); C=(1 + r)) is not constant with respect to r). We
also renounce to discuss some of the cases that are more cumbersome to be
analysed.

� When 1 < bU < bV we have suppression for all �; r (under the standing
assumptions 0 < � < 1, r > 0).

� When bU > 1 and (1 <)' (bU ) < bV < bU :

�when

(1 >)� >
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(> 0)

we have suppression for all r(> 0);

�when

(0 <)
ln bV
ln bU

< � <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have

� suppression for (0 <)r < rU ,
� inhibition for r > rU ;

�when

(0 <)
�V (KU + C)� �U�V C (bV + bV ln bV )
�U (KV + C)� �U�V C (bV + bV ln bV )

< � <
ln bV
ln bU

(< 1)

there exists exactly one value rV > 0 for which

FU+V (rV C=(1 + rV ); C=(1 + rV )) = FV (C)

(to be determined numerically) and we have

� inhibition for (0 <)r < rV ,
� suppression for r > rV ;

�when

(0 <)� <
�V (KU + C)� �U�V C (bV + bV ln bV )
�U (KV + C)� �U�V C (bV + bV ln bV )

we have suppression for all r(> 0).
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� When bU > 1 and 1 < bV < ' (bU ):

�when

(1 >)� >
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(> 0)

we have suppression for all r(> 0);

�when

(0 <)
ln bV
ln bU

< � <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have

� suppression for (0 <)r < rU ,
� inhibition for r > rU ;

�when
(0 <)� <

ln bV
ln bU

(< 1)

there exists exactly one value rV > 0 for which

FU+V (rV C=(1 + rV ); C=(1 + rV )) = FV (C)

(to be determined numerically) and we have

� inhibition for (0 <)r < rV ,
� suppression for r > rV .

� When bU > 1 and (0 <)bV < 1:

�when

(1 >)� >
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(> 0)

we have suppression for all r(> 0);

�when

(0 <)� <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have
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� suppression for (0 <)r < rU ,
� inhibition for r > rU .

� When (0 <)bU < 1 and bV > 1:

�when

(1 >)� >
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(> 0)

we have suppression for all r(> 0);

�when

(0 <)� <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have

� suppression for (0 <)r < rU ,
� synergy for r > rU .

� When bU < 1 and '(bU ) < bV < 1:

�when

(1 >)� >
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(> 0)

we have suppression for all r(> 0);

�when

(0 <)
ln bV
ln bU

< � <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have

� suppression for 0 < r < rU ,
� synergy for r > rU ;

�when (0 <)� < ln bV = ln bU (< 1) there exists exactly one value rV > 0
for which

FU+V (rV C=(1 + rV ); C=(1 + rV )) = FV (C)

(to be determined numerically) and we have
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� synergy for 0 < r < rV ,
� suppression for r > rV .

� When exp(�2) < bU < 1 and bU < bV < ' (bU ):

�when

(1 >)� >
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(> 0)

we have suppression for all r(> 0);

�when

(0 <)
ln bV
ln bU

< � <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have

� suppression for (0 <)r < rU ,
� synergy for r > rU ;

�when

(0 <)
�V (KU + C)� �U�V C (bV + bV ln bV )
�U (KV + C)� �U�V C (bV + bV ln bV )

< � <
ln bV
ln bU

(< 1)

there exists exactly one value rV > 0 for which

FU+V (rV C=(1 + rV ); C=(1 + rV )) = FV (C)

(to be determined numerically) and we have

� synergy for (0 <)r < rV ,
� suppression for r > rV ;

�when

(0 <)� <
�V (KU + C)� �U�V C (bV + bV ln bV )
�U (KV + C)� �U�V C (bV + bV ln bV )

(< 1)

we have suppression for all r(> 0).

� When (0 <)bU < exp(�2) and exp(�2) < bV < ' (bU ) the analysis is
more involved and we omit the result.

� When (0 <)bU < bV < exp(�2):
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�when

(1 >)� >
�V (KU + C)� �U�V C (bV + bV ln bV )
�U (KV + C)� �U�V C (bV + bV ln bV )

(> 0)

we have suppression for all r(> 0);
�when

(0 <)
ln bV
ln bU

< � <
�V (KU + C)� �U�V C (bV + bV ln bV )
�U (KV + C)� �U�V C (bV + bV ln bV )

(< 1)

there exists exactly one value rV > 0 for which

FU+V (rV C=(1 + rV ); C=(1 + rV )) = FV (C)

(to be determined numerically) and we have

� inhibition for (0 <)r < rV ,
� suppression for r > rV ;

�when

(0 <)
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

< � <
ln bV
ln bU

(< 1)

there exists exactly one value rU > 0 for which

FU+V (rUC=(1 + rU ); C=(1 + rU )) = FU (C)

(to be determined numerically) and we have

� suppression for 0 < r < rU ,
� inhibition for r > rU ;

�when

(0 <)� <
�V (KU + C)� �U�V C (bU + bU ln bU )
�U (KV + C)� �U�V C (bU + bU ln bU )

(< 1)

we have suppression for all r(> 0).

� When (0 <)bV < bU < 1 we have suppression for all (0 <)�(< 1), r(> 0).

An important consequence of the above analysis is that the model cannot
exhibit synergy for concentrations lower than the concentration that gives the
half value response for U (i.e. the odorant with lower Hill coe¢ cient). Indeed,
note that none of the cases for which bU > 1 gives synergy. Hence, if for a
concentration C we have synergy, it must be bU � 1, therefore bUnU � 1, which
leads to

FU (C) =
Fmax

1 + bU
nU �

Fmax
2
:

Since Fmax clearly exceeds the maximum response for U , and FU is an increasing
function, we deduce that C must exceed the concentration that gives the half
value response for U .
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Appendix A.4: Equations for speci�c experimen-
tal protocols

Experiments in Rospars et al., 2008

In [2], for each OSN the odorants U; V; and U + V were tested at the concen-
trations

U =
MU
0

2d
; V =

MV
0

2d
; M = U + V =

MV
0

2d
+
MU
0

2d
;

where d 2
�
10i=4; i = 0; :::; 11

	
is the dilution, and MU

0 e MV
0 are the molarities

of saturing vapors (see Table 1 in [2]). In this way, in each experiment results

U = rV; M = U + V = (1 + r)V; (23)

where the ratio

r =
MU
0

MV
0

remains constant at di¤erent dilutions.
The experimental raw data of dose-response curves for the odorants U; V;

and the binary mixture U + V are given in the form (JP Rospars personal
communication)�

MU
0

2d
; FU

�
;

�
MV
0

2d
; FV

�
;

�
MU
0

2d
+
MV
0

2d
; FU+V

�
: (24)

By �tting the experimental data (24) for the single odorants U and V we de-
termine the dose-response functiones FU and FV (see Eq.(12)), whereas the
response FU+V is determined as a function of the mixture concentration M =
U + V by mean of Eq.(13) in which V =M=(1 + r), i.e.

FU+V (M) =
1

1 +
1

���n

�
1 +

�K

M=(1 + r)

��n (25)

where the parameters ��; �K and �n assume the form

�� =
�UrKV + �VKU

KU + rKV
; �K =

KUKV

KU + rKV
; �n =

rnU�UKV + nV �VKU

r�UKV + �VKU
: (26)

Experiments in Cruz e Lowe, 2013

Di¤erently to [2], in [3] the mixture is tested at a �xed concentration of one of
the components. In this case, after determining by �tting the numerical values
of the parameters nU ; �U ;KU ; nV ; �V ;KV ; using Eq.(13) we obtain the response
FU+V to concentration of mixture U + V for a �xed value of the odorant V: In
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detail, by �xing the concentration C for the odorant V we obtain the response
FU+V as a function of concentration of odorant U

FU+V (U;C) =
1

1 +

2664 1 +
U

KU
+
C

KV

�
U

U

KU
+ �

V

C

KV

3775
nU+V (27)

where

nU+V =
nU�UKV U + nV �VKUC

�UKV U + �VKUC
:

For example, in the cases of the mixture EG+MIEG(1:05) (see Fig.4, bottom
right panel) the dose-response function is

FU+V (X; 1:05) =
1

1 +

2664 1 +
X

KU
+
1:05

KV

�
U

X

KU
+ �

V

1:05

KV

3775
nU�UKVX + 1:05nV �VKU

�UKVX + 1:05�VKU

where X is the concentration of odorant EG.

Performance of the proposed mixture model

In order to evaluate the performance of the proposed mixture model, we use the
mean square error (MSE) and the mean absolute percentage error (MAPE)1 to
compare the experimental data with the predicted data. The MAPE classi�ca-
tion leves are shown in Supp. Table S1 [6]

MAPE% Error classi�cation
< 10 Highly accurate
10� 20 Good
20� 50 Reasonable
> 50 Inaccurate
Supp. Table S1: Classi�cation levels of MAPE

1We recall that

MAPE =
1

n

nX
i=1

����Ei � PiPi

���� 100%
where Ei and Pi are respectively the experimental and predicted values.

13



MSE and MAPE for all set of experimental data in Figs.4-5

Fig. 4 lim men lim+men
MSE 5:825� 10�4 2:118� 10�3 4:583� 10�3
MAPE 10:273 9:972 18:484

cam men cam+men
MSE 1:953� 10�4 2:118� 10�3 1:275� 10�3
MAPE 3:632 9:972 11:687

cam lim cam+ lim
MSE 7:005� 10�4 9:548� 10�4 3:230� 10�2
MAPE 9:115 4:857 27:570

lim lyr lim+ lyr
MSE 7:854� 10�4 1:059� 10�3 1:155� 10�2
MAPE 10:545 29:615 39:598

eg mieg eg +mieg(1:05)
MSE 1:638� 10�3 3:089� 10�4 5:340� 10�3
MAPE 18:398 4:079 8:431

eg mieg eg +mieg(6:45)
MSE 1:638� 10�3 3:089� 10�4 1:382� 10�3
MAPE 18:398 4:079 4:228

Suppl. Table S2: MSE and MAPE for the experiments in Fig.4

Fig. 5 lim men lim+men lim+men corrected (�0:06 log10M)
MSE 1:728� 10�3 4:808� 10�5 3:840� 10�2 3:099� 10�2
MAPE 7:407 2:096 55:957 31:644

eva lyr eva+ lyr eva+ lyr corrected (0:026 log10M)
MSE 7:403� 10�3 7:603� 10�4 2:153� 10�2 3:645� 10�2
MAPE 10:938 13:810 33:904 19:270

cit lil cit+ lil cit+ lil corrected (�0:1 log10M)
MSE 3:007� 10�3 2:230� 10�3 2:449� 10�2 2:273� 10�2
MAPE 10:174 12:978 27:043 15:988

Suppl. Table S3: MSE and MAPE for the experiments in Fig.5
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Appendix A.5

Our purpose in this section is to study from a mathematical point of view the
OSN responses modelled by (12) and (13).
Consider �rst the following function

F(n;�;s) (X) =
Fmax

1 +

�
1 + sX

�sX

�n ; (28)

where the variable X ranges in the real positive numbers, and the parameters
n; �; s are positive as well.
Note that when s = 1=K and X is an odorant concentration (U; V; :::) we

get (12). In this way OSN responses are labeled by the triples (n; �; s);

(n; �; s) ! F(n;�;s) (X) (29)

and the odor response space is

ORS =

8>><>>:
Fmax

1 +

�
1 + sX

�sX

�n
9>>=>>;
n;�;s2R+

: (30)

Let us introduce two composition laws

(n; �; s) � (n0; �0; s0) =
�
n�s+ n0�0s0

�s+ �0s0
;
�s+ �0s0

s+ s0
; s+ s0

�
;

�> (n; �; s) = (n; �; �s); � 2 R+:
(31)

We remark that

� (n; �; s)�(n0; �0; s0) identi�es a mixture of two odorants (n; �; s) and (n0; �0; s0);
i.e.

(n; �; s)�(n0; �0; s0) ! F(n;�;s)�(n0;�0;s0) =
Fmax

1 +

�
1 + (s+ s0)X

(�s+ �0s0)X

�n�s+ n0�0s0
�s+ �0s0

� � > (n; �; s); � 2 R+ identi�es the odorant (n; �; s) at concentration �X;
i.e.

�> (n; �; s) ! Fmax

1 +
�
1+s(�X)
�s(�X)

�n :
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The practical meaning of the above operations is rather simple: to mix
odorants (n; �; s), (n0; �0; s0) at a �xed ratio r (U = rV ) is equivalent to consider�

r

r + 1
> (n; �; s)

�
�
�
1

r + 1
> (n0; �0; s0)

�
;

that is, a weighted mean in term of the operations. Some natural properties
can easily be checked: for instance, � is commutative and associative. This
means, obviously, that a mixture of several odorants does not depend on the
way one mixes them, but only on the reciprocal ratios. On the other hand,
we can not have �opposite odorants�, because of the positivity constraints. The
latter is basically the only obstacle that prevents our operations from de�ning a
vector space structure. To understand why, let us recall that to de�ne a �nite-
dimesional vector space structure over the real numbers is the same as to de�ne
a one-to-one map onto Rn (actually, an equivalence class of them): the condition
to be ful�lled is that the structural operations must correspond, via the map,
with the usual addition and scaling of vectors. We shall see below that such a
map can be constructed, with the constraint of not being onto Rn (n = 3).
The space (ORS; �;>) embeds into the standard topological vector space

R3 by means of the map

(n; �; s) 7! (n�s; �s; s): (32)

Indeed from (32) we obtain that

(n; �; s) � (n0; �0; s0) 7! (n�s; �s; s) + (n0�0s0; �0s0; s0) (33)

�> (n; �; s) 7! �(n�s; �s; s) (34)

The �rst simple qualitative conclusion suggested from the mathematical point
of view is that no privileged odorants arise in the odor space. Indeed, the
only �special�element in R3 is the zero triple, which is out of the range of the
embedding (i.e. K lies at in�nity). The special status of the zero triple can
be justi�ed by saying that any automorphism (i.e. transformations preserving
the mathematical structure) must transform the zero triple into itself. On the
contrary, any two nonzero triples can be transformed into each other by some
automorphism, and are henceforth equivalent from a structural (mathematical)
point of view.
Another interesting feature carried by the vector space structure of R3 is

that the choice of three independent vectors (i.e., a basis) su¢ ces to generate
the whole space. The map (32) could be used to carry a similar feature on the
odor space,

(�1 > (n1; �1; s1))�(�2 > (n2; �2; s2))�(�3 > (n3; �3; s3)) 7!
3X
i=1

�i (ni�isi; �isi; si) ;

(35)

16



but with some cautions. Indeed, the odor space is mapped only on the positive
octant R3+, because only positive scalars are allowed in order to have a physically
meaningful combinations

(�1 > (n1; �1; s1)) � (�2 > (n2; �2; s2)) � (�3 > (n3; �3; s3)) : (36)

Thus, let us choose three vectors

e1 = (n1�1s1; �1s1; s1) ; (37)

e2 = (n2�2s2; �2s2; s2) ;

e3 = (n3�3s3; �3s3; s3) ;

in the positive octant R3+, which constitute a basis provided that

� � �1�2 (n1 � n2)� �1�3 (n1 � n3) + �2�3 (n2 � n3) 6= 0: (38)

Every vector (n�s; �s; s) 2 R3+ is uniquely obtained as a linear combination of
(37), i.e.

8(n�s; �s; s) 9! (�1; �2; �3) : (n�s; �s; s) =
3X
i=1

�i (ni�isi; �isi; si) (39)

The scalars in (39) must be positive and can explicitly be determined as follows:

�1 =
s [�n(�2 � �3) + �2n2(�3 � �) + �3n3(� � �2)]

s1�
> 0; (40)

�2 =
s [�n (�3 � �1) + �1n1(� � �3) + �3n3(�1 � �)]

s2�
> 0;

�3 =
s [�n(�1 � �2) + �1n1(�2 � �) + �2n2(� � �1)]

s3�
> 0:

Hence, in ORS, an odorant (n; �; s) is a combination of

F(n1;�1;s1) =
Fmax

1 +

�
1 + s1X

�1s1X

�n1 ;
F(n2;�2;s2) =

Fmax

1 +

�
1 + s2X

�2s2X

�n2 ;
F(n3;�3;s3) =

Fmax

1 +

�
1 + s3X

�3s3X

�n3
by means of positive scalars �1; �2; �3;if and only if (37) e (40) are ful�lled. Due
to the restriction (40), no triple can cover the whole positive octant.
In order to visualize the generation procedure in the odor response space

ORS, we �rst point out that, from a mathematical viewpoint, two di¤erent
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odorants with the same parameters (n; �) behave as if they were the same at
di¤erent concentrations. Hence ORS can be e¤ectively represented in the plane
(n; �) as its �rst quarter. Combinations in ORS corresponds to convex combi-
nations through the map

(n; �) 7! (n�; �): (41)

For instance, let us consider the basis

(n1; �1; s1) : n1 = 0:1; �1 = 0:1; s1 > 0 (42)

(n2; �2; s2) : n2 = 0:1; �2 = 18; s2 > 0

(n3; �3; s3) : n3 = 18 �3 = 0:1; s3 > 0:

In Fig. 1 is represented the region it generates.

Figure 1

It is a triangle (convex hull of three points) in the space (n�; �);deformed
according to the map (41).
Suppose now that odorant parameters (n; �; s) are constrained as follows

n 2 [nmin; nmax] ; � 2 [�min; �max] ; s > 0: (43)

It is pretty clear that a triple can not generate all of them. However, four
suitable odorants will su¢ ce. Indeed, the map (41) tranforms lines of type
n =const and � =const into lines in the plane (n�; �): Hence the convex hull
given by the four vertices

(nmin; �min; s1) ; s1 > 0
(nmin; �max; s2) ; s2 > 0
(nmax; �min; s3) ; s3 > 0
(nmax; �max; s4) ; s4 > 0

(44)

covers every odorant F(n;�;s) verifying (43).
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We remark that if we consider the following two set of three vertices (44)

B1 =

8<: (nmin; �max; s2) ; s2 > 0
(nmax; �min; s3) ; s3 > 0
(nmax; �max; s4) ; s4 > 0

9=; ; B2 =

8<: (nmin; �min; s1) ; s1 > 0
(nmin; �max; s2) ; s2 > 0
(nmax; �min; s3) ; s3 > 0

9=; ;
each of them satis�es condition (38). Infact, since nmin < nmax; and �min <
�max, we obtain for B1 and B2; respectively

�1 � �max�min (nmin � nmax)� �2max (nmin � nmax) + �min�max (nmax � nmax)
= �max (nmin � nmax) (�min � �max) 6= 0;

�2 � �min�max (nmin � nmin)� �min�min (nmin � nmax) + �max�min (nmin � nmax)
= �min (nmin � nmax) (��min + �max) 6= 0

In this way, the set B1 covers every odorant F(n;�;s) verifying the following
constraints

�min < � < �max;
�minnmax (�max � �) + �maxnmin (� � �min)

� (�max � �min)
< n < nmax;

whereas the set B2 covers every odorant F(n;�;s) verifying the constraints

�min < � < �max; nmin < n <
�minnmax (�max � �) + �maxnmin (� � �min)

� (�max � �min)
;

The curve of equation

�min < � < �max; n =
�minnmax (�max � �) + �maxnmin (� � �min)

� (�max � �min)

can be covered by all the four odorants.
For example, if we suppose that

n 2 [0:1; 18] ; � 2 [0:1; 18] ; s > 0; (45)

we obtain that the convex hull of vertices

(0:1; 0:1; s1) ; s1 > 0
(0:1; 18; s2) ; s2 > 0
(18; 0:1; s3) ; s3 > 0
(18; 18; s4) ; s4 > 0

(46)

covers every odorant F(n;�;s) verifying (45). In fact, if we consider the following
two triples

(0:1; 18; s2) ; s2 > 0
(18; 0:1; s3) ; s3 > 0
(18; 18; s4) ; s4 > 0

;
(0:1; 0:1; s1) ; s1 > 0
(0:1; 18; s2) ; s2 > 0
(18; 0:1; s3) ; s3 > 0
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we easily verify that generate the regions in Figs 2 and 3, respectively.

Figure 2 Figure 3

We remark that the union of the regions in Figs.2-3 is able to cover the entire
rectangle [0:1; 18] � [0:1; 18] in the phase plane (n; �) except for the curve of
equation

� =
9

5n
; 0:1 < n < 18: (47)

Therefore, to include the curve (47) we use the four vectors (46). In particular,
setting

s = s1 = s2 = s3 = s4 = 1;

we obtain that�
n;
9

5n
; 1

�
= (�1 > (0:1; 0:1; 1))�(�2 > (0:1; 18; 1))�(�3 > (18; 0:1; 1))�(�4 > (18; 18; 1))

in which

�2 =
18� n
179n

� �1
180

; �3 =
18(10n� 1)
179n

� �1; �4 =
�1
180

;

and

�1 <

8>><>>:
180n� 18
179n

; if
1

10
< n � 181

20
;

3240� 180n
179n

; if
181

20
< n < 18:

:

This shows that a point of the curve (47) (except the endpoints) can be
obtained in in�nitely many ways as a combination of the four vectors with
positive coe¢ cients, and in exactly one way as a combination of the two vectors
(0:1:18; 1), (18; 0:1; 1) with positive coe¢ cients.
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Appendix A.6

We consider a set of four OSN responses to concentration of odorants U; V

OSN odorant U odorant V
1 nU = 11:5; �U = 4:5;KU = 8� 10�5 nV = 6:7; �V = 10:5;KV = 10

�4

2 nU = 13:7; �U = 3:5;KU = 8� 10�5 nV = 3:4; �V = 11:4;KV = 10
�4

3 nU = 14:5; �U = 2:8;KU = 8� 10�5 nV = 4:3; �V = 12:6;KV = 10
�4

4 nU = 12:5; �U = 1:9;KU = 8� 10�5 nV = 5:9; �V = 13:9;KV = 10
�4

(48)
Owing to (15), the OSN responses to binary mixture U + V for r = 1 are

OSN binary mixture U + V
1 �n = 8:374; �� = 7:167; �K = 4:4� 10�5
2 �n = 6:256; �� = 7:011; �K = 4:4� 10�5
3 �n = 6:517; �� = 7:155; �K = 4:4� 10�5
4 �n = 6:863; �� = 7:233; �K = 4:4� 10�5

(49)

Since the odorant parameters (n; �;K) are constrained as follows

n 2 [0:1; 18] ; � 2 [0:1; 18] ; s > 0;

it is easy to verify that the OSN responses to odorants U; V and U + V are
located into the region

� >
9

5n
; 0:1 < n < 18;

of the plane (n; �). Then, this region is generated by the basis

(0:1; 18; s1) ; s1 > 0
(18; 0:1; s2) ; s2 > 0
(18; 18; s3) ; s3 > 0

(50)

and setting s1 = s2 = s3 = 105; we obtain that all the OSN responses to
odorants U; V and U + V are combination of vectors (50), i.e.�

�1 >
�
0:1; 18; 105

��
�
�
�2 >

�
18; 0:1; 105

��
�
�
�3 >

�
18; 18; 105

��
according to the following values of �1; �2; �3
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OSN scalars odorant U odorant V mixture U + V

1
�1
�2
�3

0:011
0:094
0:019

0:037
0:042
0:021

0:048
0:136
0:041

2
�1
�2
�3

0:006
0:101
0:018

0:052
0:037
0:011

0:057
0:138
0:029

3
�1
�2
�3

0:004
0:106
0:015

0:053
0:030
0:016

0:057
0:136
0:031

4
�1
�2
�3

0:004
0:112
0:008

0:052
0:023
0:025

0:056
0:135
0:033

In the above example we considered for simplicity the mixture U + V (at
the same concentration) for all OSN. In general, di¤erent OSNs may lead to
mixtures of U and V at di¤erent concentrations.
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