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Appendix A.1

In [1]-[2] and [3] two different models were proposed, to take into account the
responses Fy and Fyyy to concentrations of an odorant U and of a binary
mixture U + V, respectively. In this appendix we discuss some features of
those models, in view of the empirical properties mentioned in the main text.
To turn those experimental qualitative descriptions into rigorous mathematical
definitions, one should take into account that they involve terms that are not
necessarily consensual in the literature, or that cannot be easily expressed into
mathematical relations. For this reason we will focus the analysis on the three
basic behaviours of suppression, inhibition and synergy (see [5],[2]).

In most cases, the responses Fy, Fy to single odorants, and Fyiy to the
mixture, are compared at the same concentration. This means that if a mix-
ture is performed at a certain ratio » > 0, then is U = rV, and the response
Fyiv(U, V) = Fyyv(rV, V) is relative to the concentration C' := U +V =
(1+ 7)V. Henceforth, it is compared with the responses Fy(C) and Fy (C). In
this context, we say that inhibition happens when

F‘U_H/(Uv7 V) < mln{FU(C),Fv(C)} s

synergy when
FU+V(U, V) > maX{FU(C), Fv(C)},

and suppression when Fyyy (U, V) is (strictly) intermediate between Fy (C),
Fy(C). Hence we ignore the comparison of Fyyyv (U, V) with the sum Fy (U) +
Fy (V).

The above interpretation will mainly be used in Appendix A3. In the main
text we explain that a slightly different interpretation is also worthy of consid-
eration. It basically consists in considering V' = C/(1 4 r) in place of C, in the
response to a mixture. These interpretations do not conflict in the asymptotic
region.

¢ Rospars et al. models



In [I] and [2], the authors proposed the following models

U n V n
Fuw m (7)) + P (7)
FU:W7 Fuiv (UV) = U\" vV \" (1)
1+ (T) 1+ — 4+ [ —
Ky Ky
where n is a Hill coefficient, Ky, Ky, Fyp and Fay are constants (see
[21).

e Cruz and Lowe models
In [3] the authors, instead of , proposed the following models

F, F,
Frr— max F U.V) = max
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where n is a Hill coefficient, Fiyax is the maximal response, n,, and ny are
the efficiencies of activation of transduction by each odorant.

Equations 2 and 2 are both functions of two compounds in concen-
tration U and V. However, following the experimental protocol, it is useful to
analyze them under the condition

U=rV, (3)
where r is a positive constant.

Rospars et al. binary mixture model
In [2] is proved that Eq. (1)2 becomes

Furp

F
ﬁv FU+V (M):$ (4)
1+ ((1+7I'))V)

Fyiv (rV,V) = 1+(&)n7
i

where M = U + V and

FJ\4U7‘nK‘7} +FM\/K[T} 1
Fyrp, = K,=(1 KyKy |l —————. 5
My (Kp+rKy) 7 0 (1+7) KyKy Ky + Ki; ©)

Then, Fip is the asymptotic value of function Fyyyy (rV, V), the concentration
of V' (resp. of M) at half maximum response Fi,/2 is K,/ (1 +r) (vesp. K),).
Moreover, the asymptotic value of function Fy 1y is always located between the
single-odorant curves. In fact, from for all r we obtain

min (Fyoy, Fvv) < Fap < max (Fyo, Favy) - (6)



Cruz and Lowe binary mixture model
Analogously, if the concentrations U and V of the odorants are such that
U =rV Eq. 2 becomes

Fmax
1 1+R n
" 4

where the parameters 7 = 7 (r,n,,mv, Ku, Kv), K = K (r, Ky, Ky) assume
the form

Fyyv (U,V) = Fyyv (rV,V) = (7)

__nurKv +nvKy o 5 KuKy (8)
n Ky +rKy Ky +rKy'
In this case, the asymptotic value of function Fyiy (rV,V) is
Fmax _nFmaX
= T (9)
1+ — "
7771
. . ﬁnFmax
and the concentration of V' at half maximun response ————— is
2(1+7")
K (10)
VZr -1
From we obtain
min (7, nv) <1 < max (qu,nv)
and owing to @D for all v we have
. Fmax Fmax Fmax Fmax Fmax
min T i < i < max T |- (11)
I+ — 1+ — 14+ — I+ — 1+ —
Ny UAvs n N UAvs

Then, owing to @ and , both the models and cannot reproduce

mixtures exhibiting synergy or inhibition in their maximal response.



Appendix A.2

Model for binary mixture

In order to find a model able to describe each type of interaction among two
single odorant it is necessary to expand the space of allowed Hill functions. To
this purpose, we assume that the Hill coefficient in the mixture model 2 can
depend on the odorants. Note that there are experimental findings showing that
the response of the same OSN to different odorants may exhibit different Hill
coefficients (see [7]). Then, starting from Eq. (2)); for the odorants U and V

Fmax Fmax
FU(U): ny FV(V): nyv (12)
1 Ky 1 Ky
1+ — (14— 1+ — 14+ —
n[VJLU U nev V
we propose the following model for binary mixture
Fmax
Fyiv (UV) = i v (13)
1+ — 4+ -
1+ R Ry
LA
Ny Ky My Ky
where
 nynmuKyvU +nyny KyV
nuyv = : (14)
nuEKvU +nyKyV

Equation is a function of two compounds in concentration U and V. How-
ever, if U = rV where r is a constant, we obtain

Fmax
. (15)
1+ L (148
n" Vv

where the parameters 7 = 7 (r,n,,nv, Kv, Kv),K = K (r, Ky, Ky) and 7t =
7 (r,ny,nv,n,,nv, Ky, Ky) assume the form

. nurKy +nv Ky jra Ky Ky _— rnynu Kv +nyny Ky (16)
Ky+rKy Ky +rKy’ ruKy +nvKy
We note that if ny = ny, then and become 2 and , respec-
tively.
The asymptotic value of function is

Fmax . ﬁﬁFmax

T "
/]771
and the concentration of V' at half maximun response nimi)f is
2(1+77)
K
_ 18
Vit (18)



Model for mixture of N odorants

Equation can be easily generalized to a model for mixture of N odor-
ants

Fmax
Furx (U17~~-7UN) = N MAMIX (19)
U;
1+ —
+ - -
U;
o Ku
where
o U,
Zan‘,nUl K
NMIX = ZZlN— (20)

Similarly, setting for all i € {1,..., N — 1} ,U; = r;Un where r; are positive
constants, we obtain

Fmax
Furx (TIUNw-'vUN) = 1 Kuyrx MMIX (21)
NMrx Un
where
= T 1
7, + 7 _
n i=1 KU’ " K N N K 1/ Nzl - + !
MIX — ) MIX — ’
=y, 1 —~ Ku,  Kuy
+
=1 KU"’ KUN
N-1 X (22)
ZnUan1 K +’n’UN77UN KU
_ =1 N
nMIX = N_1




Appendix A.3: Analysis of the proposed mixture
model

For applicative purposes, one might be interested in knowing a priori for which
mixtures our model , predicts inhibition, synergy or suppression, as
described at the beginning of Appendix Al. Here we give details for the
whole range of concentrations; namely, we look for the three ranges of values
of U, Ky,nu,nu,V,Ky,ny,ny, for which those qualitative behaviours occur.
This problem obviously consists in solving (rather cumbersome) inequalities
that arise by comparing the values Fyv (U, V), Fy(C), Fy(C) given by
and with C:=U+ V.
To use
r:=U/V, C=U+V

instead of the pair U, V' is perhaps more meaningful and mathematically simpler.
Because of the inverse formulas
C C
- y=
1+7r 1+7r

U

we have no loss, nor substantial bias of information.

Note also that if one gets ny, ny multiplied by the same (positive) constant,
the behaviour stays the same. Hence the ranges can be described using the
parameter

pi=ny/ny

instead of the pair (ny, ny). When ny = ny we have the Cruz and Lowe model,
which has already been discussed. Hence we assume ny # ny. Moreover, to
avoid an unnecessary long description, we assume that U denotes the odorant
with the least Hill coefficient (exponent n):

ny <ny |

that is, p < 1. Hence, to test parameters against the list of cases we are going
to display, one should keep in mind that if nyy > ny, then U and V' have to be
exchanged (either in the data or in the list).

It will also be convenient to set

. Ky+C
nyC

_Kv—|—0

by : , by =
v v nyC

and to consider the function ¥y = x 4+ zlnz. This function has an absolute
minimum (z,y) = (exp(—2), —exp(—2)), and it is increasing for x > exp(—2).
We shall denote by ¢(y) the (partial) inverse defined for y > —exp(—2) (with
values ¢ > exp(—2)). To better understand the cases in the list below, one
should take into account that y > ¢(y) > 1 when y > 1 and y < ¢(y) < 1 when
y <1



For the sake of brevity, we shall disregard some edge cases: in the list below
we shall always use strict inequalities and we also assume

v Ky Ky (Ky + C) #nuKyKy (Ky + C)

(that is, Fyyy (rC/(1+r),C/(1+ 7)) is not constant with respect to r). We
also renounce to discuss some of the cases that are more cumbersome to be
analysed.

e When 1 < by < by we have suppression for all p,r (under the standing
assumptions 0 < p < 1, r > 0).

e When by > 1 and (1 <)p (by) < by < by:

— when
nv (Ku + C) —nunvC (bu + by Inby)
1>)p> >0
( )P nu (KV +C) —nunyC (bUerU lnbU)( )
we have suppression for all r(> 0);
— when
Inb K C)— C(b byInbd
0 <o nv (Ku +C) —nqunvC (by + by In U)(<1)
In by nu (Kv + C) —nunvC (bu + by Inby)
there exists exactly one value ry > 0 for which
Fyiv (roC/(L+71u),C/(1 +ry)) = Fu(C)
(to be determined numerically) and we have
* suppression for (0 <)r < ry,
* inhibition for r > ry;
— when
K C)— C (b by Inb Inb
(0<)77V( v+ C) —nunvC (bv + by Inby) HV(<1)

< p<
nu (Kv + C) —nunyC (bV + by In bv) p In by

there exists exactly one value ry > 0 for which
Fuiv (TvC/(l + Tv)7 C/(l + Tv)) = Fv(o)

(to be determined numerically) and we have
* inhibition for (0 <)r < ry,
* suppression for r > ry;

— when
nv (Ky + C) —nunvC (by + by Inby)

nu (Kv + C) —nunvC (by + by Inby)

we have suppression for all r(> 0).

(0<)p <




e When by > 1 and 1 < by < ¢ (by):

— when

nv (Ky + C) —nunvC (by + by In by )
nu (Kv + C) —nunvC (by + by Inby)

(1>)p> (>0)

we have suppression for all r(> 0);

— when

In by nv (Ky + C) —nunyC (by + by Inby)
<p< (<1
Inbyy nu (Kv + C) —nunyC (by + by Inby)

(0<)

there exists exactly one value ryy > 0 for which
Fyiv (ruC/(L+1u),C/(1+1y)) = Fu(C)

(to be determined numerically) and we have

* suppression for (0 <)r < ry,
* inhibition for r > ry;

— when
In bV

(0 <p < (<1

In by

there exists exactly one value ry > 0 for which
Fyiv (rvC/(1+7ry),C/(1+ry)) = Fy(C)

(to be determined numerically) and we have

* inhibition for (0 <)r < ry,
* suppression for r > ry.

e When by > 1 and (0 <)by < 1:

— when
nv (Ky + C) — nunyvC (by + by Inby)
1>)p> >0
1>)e nu (Kv +C) —nunvC (bu + bu lnbU)( )
we have suppression for all r(> 0);
— when
K C)— C (b byInb
(0<)p < nv (Ku +C) —nqunvC (by + by In U)(< 1)

nu (Kv + C) —nunvC (bu + by Inby)

there exists exactly one value ry > 0 for which
Foiv (roC/(1+1y),C/(1+1y)) = Fu(C)

(to be determined numerically) and we have



* suppression for (0 <)r < ry,
% inhibition for r > ry.

e When (0 <)by < 1 and by > 1:

— when
nv (KU + C) —nunyC (bU + by In bU)
1>)p> >0
(1>)p nu (Ky + C) —nunvC (by + by hlbU)( )
we have suppression for all r(> 0);
— when
K C)— C (b by Inb

(0<)p<TIV( v+ C) —nunvC (by + by In U)(<1)

nu (Kv + C) = nunvC (by + by Inby)

there exists exactly one value ryy > 0 for which
Fyiv (ruC/(L+ru),C/(1+1y)) = Fu(C)

(to be determined numerically) and we have
* suppression for (0 <)r < ry,
* synergy for r > ry.

e When by < 1 and ¢(by) < by < 1:

— when

nv (Ky + C) — nunvC (by + by Inby)

1>)p>
(> nu (Kv + C) —nunvC (by + by Inby)

(>0)

we have suppression for all r(> 0);
— when
0 <)1nbv pe IV (Ky + C) —nunvC (by + by Inby)
In by nu (Kv +C) —nunvC (by + by Inby)

(<1
there exists exactly one value riy > 0 for which

Fyiv (TUC/(l + 7’U)7 C/(l + TU)) = FU(C)

(to be determined numerically) and we have

x suppression for 0 < r < ry,
x synergy for r > ry;

— when (0 <)p < Inby/Inby(< 1) there exists exactly one value ry > 0
for which

Fyiv (Tvc/(l + Tv), C/(l + Tv)) = Fv(C)

(to be determined numerically) and we have



* synergy for 0 <r < ry,
* suppression for r > ry.

e When exp(—2) < by < 1 and by < by < ¢ (by):

— when
nv (Kv + C) —nunvC (bu + by Inby )
1>)p> >0
( )p nu (Kv -‘rC) —nunyC (bU+bU lnby)( )
we have suppression for all r(> 0);
— when
In by nv (Ku + C) —nunvC (bu + by Inby)
0< < p< <1
( )lnbU p nu (KV -‘rC) —77U7]\/C (bU+bU lnbU)( )
there exists exactly one value riy > 0 for which
Fyiv (ruC/(L+ru),C/(1+1y)) = Fu(C)
(to be determined numerically) and we have
* suppression for (0 <)r < ry,
x synergy for r > ry;
— when
nv (Ky +C) —nunyC (by + by Inby In by
(0 <) \Ku+ ) ( ) vy
nu (Kv +C) —nunyC (by + by Inby) In by;
there exists exactly one value ry > 0 for which
Fuiv (rvC/(1+1v),C/(1+rv)) = Fy(C)
(to be determined numerically) and we have
x synergy for (0 <)r < ry,
* suppression for r > ry;
— when
Ky+C)— C (b by Inb
(0<),0<77V( v+C)—nunyC (by + VHV)<<1)

nu (Kv + C) —nunyC (bV + by In bv)

we have suppression for all r(> 0).

e When (0 <)by < exp(—2) and exp(—2) < by < ¢ (by) the analysis is
more involved and we omit the result.

e When (0 <)by < by < exp(—2):

10



— when

nv (Ky 4+ C) — nunyvC (by + by Inby)
nu (Kv + C) —nunyC (by + by Inby)

we have suppression for all r(> 0);

(1>)p >

(>0)

— when

)lnbv ny (KU+C)—77U77Vc(bv+bvlnbv)

0<
( by " (Kv +C) —numyvC (by + by lnby)

(<1
there exists exactly one value ry > 0 for which

Fyiv (’I"Vc/(l + Tv), C/(l + Tv)) = Fv(C)

(to be determined numerically) and we have
x inhibition for (0 <)r < ry,
% suppression for r > ry;

— when
nv (Kuy + C) —nunyC (by + by Inby In by
(0 <) W Ku 20 ( )< p< B0V (o
nu (Kv + C) —nunvC (bu + by Inby) In by
there exists exactly one value ryy > 0 for which
FU+V (T‘UC/(]. + 7'U)7 C/(]. + TU)) = FU(C)
(to be determined numerically) and we have
% suppression for 0 < r < ry,
* inhibition for r > ry;
— when
K C)— C( by Inb
(0 <)p < nv (Ky + C) —nunvC (by + by In U)(< 1)

nu (Kv + C) —nuny C (by + by Inby)

we have suppression for all 7(> 0).
e When (0 <)by < by < 1 we have suppression for all (0 <)p(< 1), (> 0).

An important consequence of the above analysis is that the model cannot
exhibit synergy for concentrations lower than the concentration that gives the
half value response for U (i.e. the odorant with lower Hill coefficient). Indeed,
note that none of the cases for which by > 1 gives synergy. Hence, if for a
concentration C' we have synergy, it must be by < 1, therefore by"Y < 1, which
leads to P F
— max > max .

1+b65™" — 2
Since Fiax clearly exceeds the maximum response for U, and Fy is an increasing
function, we deduce that C' must exceed the concentration that gives the half
value response for U.

Fy(O)

11



Appendix A.4: Equations for specific experimen-
tal protocols

Experiments in Rospars et al., 2008

In [2], for each OSN the odorants U, V, and U + V were tested at the concen-
trations - v v -
M, M, M, M
U==-2, v==-"2 M=U+V=-224+-20
2d’ 2d "’ * 2d * 2d’
where d € {10i/4,i =0,.., 11} is the dilution, and MY e MY are the molarities
of saturing vapors (see Table 1 in [2]). In this way, in each experiment results

U=rV, M=U+V=_>1+rm)V, (23)
where the ratio
My
T = Y
My

remains constant at different dilutions.

The experimental raw data of dose-response curves for the odorants U, V,
and the binary mixture U 4+ V are given in the form (JP Rospars personal
communication)

— F —, F; — 4+ ——, F . 24
<2da U)7 <2d7 Vs 2d+2da U+v ( )

By fitting the experimental data for the single odorants U and V we de-
termine the dose-response functiones Fy and Fy (see Eq.), whereas the
response Fyiy is determined as a function of the mixture concentration M =
U +V by mean of Eq.(13) in which V = M/(1+7r), i.e.

Fyyv (M) = ! = 7 (25)

v ()

where the parameters 7, K and 7 assume the form

nurKy +nv Ky 7 Ky Ky - rnynuKv +nyny Ky

Ky +rKy ' Ky +rKy’ ru Ky +nv Ky

n= - (26)

Experiments in Cruz e Lowe, 2013

Differently to [2], in [3] the mixture is tested at a fixed concentration of one of
the components. In this case, after determining by fitting the numerical values
of the parameters ny, 1, , K7, nv, 1, , Kv, using Eq. we obtain the response
Fy v to concentration of mixture U + V for a fixed value of the odorant V. In

12



detail, by fixing the concentration C for the odorant V' we obtain the response
Fyyv as a function of concentration of odorant U

1
Fuiv (U7 O) = U C nUutv (27)

14— 4+ =

1+ e TRy

LA

77U KU 77v KV

where

S nynuKyvU +nyny KyC
* nuKyvU +nyKyC

For example, in the cases of the mixture EG + MIEG(1.05) (see Fig.4, bottom
right panel) the dose-response function is

1
nynuKv X + 1.05nyny Ky
Ky Ky
X 1.05

T]UKfU'H?vKiV

Fyryv (X,1.05) =

1+

where X is the concentration of odorant EG.

Performance of the proposed mixture model

In order to evaluate the performance of the proposed mixture model, we use the
mean square error (MSE) and the mean absolute percentage error (MAPEE to
compare the experimental data with the predicted data. The MAPE classifica-
tion leves are shown in Supp. Table S1 [6]

MAPE% Error classification
<10 Highly accurate

10 — 20 Good

20 — 50 Reasonable

> 50 Inaccurate

Supp. Table S1: Classification levels of MAPE

IWe recall that
1 n
MAPE = — E

L)

d £1100%

[

where E; and P; are respectively the experimental and predicted values.

13



MSE and MAPE for all set of experimental data in Figs.4-5

Fig. 4 lim men lim + men
MSE 5.825 x 10-% 2118 x 1073 4.583 x 1073
MAPE 10.273 9.972 18.484
cam men cam -+ men
MSFE 1.953 x 10~%* 2.118 x 103 1.275 x 1073
MAPE 3.632 9.972 11.687
cam lim cam + lim
MSE 7.005 x 107%  9.548 x 10~ * 3.230 x 102
MAPE 9.115 4.857 27.570
lim lyr lim + lyr
MSE 7.854 x 10~% 1.059 x 102 1.155 x 102
MAPE 10.545 29.615 39.598
eg mieg eg + mieg(1.05)
MSE 1.638 x 103 3.089 x 10~% 5.340 x 1073
MAPE 18.398 4.079 8.431
eg mieg eg + mieg(6.45)
MSE 1.638 x 1073 3.089 x 10~* 1.382 x 1073
MAPE 18.398 4.079 4.228

Suppl. Table S2: MSE and MAPE for the experiments in Fig.4

Fig. 5 lim men lim + men lim 4 men corrected (—0.06log, ;M)
MSE 1728 x 1073 4.808 x 107> 3.840 x 102 3.099 x 1072
MAPE 7.407 2.096 55.957 31.644

eva lyr eva + lyr eva + lyr corrected (0.026log,, M)
MSE 7.403 x 1073 7.603 x 10~*  2.153 x 1072 3.645 x 1072
MAPE 10.938 13.810 33.904 19.270

cit lil cit + 1il cit + lil corrected (—0.11log,,M)
MSE ~ 3.007 x 1073 2.230 x 107 % 2.449 x 102 2.273 x 1072
MAPE 10.174 12.978 27.043 15.988

Suppl. Table S3: MSE and MAPE for the experiments in Fig.5

14



Appendix A.5

Our purpose in this section is to study from a mathematical point of view the

OSN responses modelled by and .
Consider first the following function

FIII&X
( 1 + SX ) no
14
nsX
where the variable X ranges in the real positive numbers, and the parameters
n,n, s are positive as well.

Note that when s = 1/K and X is an odorant concentration (U,V,...) we
get . In this way OSN responses are labeled by the triples (n, 7, s),

Flng.s) (X) = (28)

(n, , 5) — F(n,n,s) (X) (29)

and the odor response space is

ORS = { —Amex ___ . (30)

(1 + sX) "
1+
USX n,n,s€R+

Let us introduce two composition laws

;o (mms+n'n's’ ns+n's ,
(o) o o) = (PRI IS ).

(31)
ax (n,n,s)=(n,n,as), «o€cRy.

We remark that

— (n,n,s)e(n',n’,s") identifies a mixture of two odorants (n,, s) and (n’, 7, s’),
ie.

Fmax

(’IL, , S).(nlr 7],7 S/) — F(n,n,s)o(n’ﬂy’,s’) =

(ns+n's") X

— ax(n,n,s), «€ R, identifies the odorant (n,n,s) at concentration aX,
ie.

Fmax

0% (m,7,5) r ——mEE
1+s(aX)
1+ (‘nsz) )

15

nns +n'n's
(1 + (s+8')X> ns+n's
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The practical meaning of the above operations is rather simple: to mix
odorants (n,n, s), (n’,n’,s') at a fixed ratio r (U = rV) is equivalent to consider

r 1
[r—|— 7% (n,ms)} . [m % (n',n',s)]| ,
that is, a weighted mean in term of the operations. Some natural properties
can easily be checked: for instance, e is commutative and associative. This
means, obviously, that a mixture of several odorants does not depend on the
way one mixes them, but only on the reciprocal ratios. On the other hand,
we can not have ‘opposite odorants’, because of the positivity constraints. The
latter is basically the only obstacle that prevents our operations from defining a
vector space structure. To understand why, let us recall that to define a finite-
dimesional vector space structure over the real numbers is the same as to define
a one-to-one map onto R™ (actually, an equivalence class of them): the condition
to be fulfilled is that the structural operations must correspond, via the map,
with the usual addition and scaling of vectors. We shall see below that such a
map can be constructed, with the constraint of not being onto R" (n = 3).

The space (ORS, e, %) embeds into the standard topological vector space
R3 by means of the map

(n,m, ) = (nns,ms, s). (32)
Indeed from we obtain that
(n,m,s) e (n',n',s") = (nns,ns,s) + (n'n's',n's’, s") (33)

ax (n,n,s) — a(nns,ns, s) (34)

The first simple qualitative conclusion suggested from the mathematical point
of view is that no privileged odorants arise in the odor space. Indeed, the
only ‘special’ element in R? is the zero triple, which is out of the range of the
embedding (i.e. K lies at infinity). The special status of the zero triple can
be justified by saying that any automorphism (i.e. transformations preserving
the mathematical structure) must transform the zero triple into itself. On the
contrary, any two nonzero triples can be transformed into each other by some
automorphism, and are henceforth equivalent from a structural (mathematical)
point of view.

Another interesting feature carried by the vector space structure of R? is
that the choice of three independent vectors (i.e., a basis) suffices to generate
the whole space. The map could be used to carry a similar feature on the
odor space,

3

(o1 % (n1,m1,81))8(2 % (n2,7m2, 52))8(x3 * (n3, M3, 83)) Z o (N1, M8, $i) 5
i=1

(35)
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but with some cautions. Indeed, the odor space is mapped only on the positive
octant Ri, because only positive scalars are allowed in order to have a physically
meaningful combinations
(o1 % (n1,m,81)) @ (a2 % (2,72, 52)) ® (a3 % (n3, 13, 83)) - (36)
Thus, let us choose three vectors
er = (nim1s1,M81,51), (37)
ey = (nam2sa, M252,52)

€3 = (n377333, 1383, 83) )

in the positive octant Ri, which constitute a basis provided that

A =mmnz (1 —n2) —mnz (n1 — ng) + n2ms (n2 — ng) # 0. (38)
Every vector (nns,ns,s) € Ri is uniquely obtained as a linear combination of
[B7), ie.
3

V(nns,ns,s) (a1, az,a3):  (nns,ns,s) = Z ;i (ninisi, misi, si)  (39)
i=1

The scalars in must be positive and can explicitly be determined as follows:

s [nm(n2 — n3) + mana(nz —n) + nzna(n — n2)]

- 0 40
aq SlA > U, ( )
o = S0 s = m) +mm (n = ng) +mgns(m — )]

SQA
o = S1mUm —m) + nml(nz— n) +mene(n —m)]
s3

Hence, in ORS, an odorant (n,7, s) is a combination of

FIl'la,X
F(nwhm) = T+s X\
1+ ———
( ms1X )
Fmax
F("zﬂ]msz) = 1 + 82X nz o
1+ ———
( N252. X )
Fmax
F(n37773753) = 1 +S3X n3
mE)
n353X

by means of positive scalars o, as, a,if and only if e are fulfilled. Due
to the restriction , no triple can cover the whole positive octant.

In order to visualize the generation procedure in the odor response space
ORS, we first point out that, from a mathematical viewpoint, two different
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odorants with the same parameters (n,n) behave as if they were the same at
different concentrations. Hence ORS can be effectively represented in the plane
(n,m) as its first quarter. Combinations in ORS corresponds to convex combi-
nations through the map

(n,n) = (nn,mn). (41)

For instance, let us consider the basis

(n1,m1,51): n1 =01, m =01, s >0 (42)
(n2,m2,82) 1 ma=0.1, 1m2=18, s3>0
(n3,m3,83): n3 =18 n3=0.1, s3>0.

In Fig. 1 is represented the region it generates.

15 1

10 1

0 5 10 15
Figure 1

It is a triangle (convex hull of three points) in the space (n7,n),deformed
according to the map .
Suppose now that odorant parameters (n,7, s) are constrained as follows

nec [nmim nmax] , me [77mir17 nmax] , S§> 0. (43)

It is pretty clear that a triple can not generate all of them. However, four
suitable odorants will suffice. Indeed, the map tranforms lines of type
n =const and 1 =const into lines in the plane (nn,n). Hence the convex hull
given by the four vertices

(nminanmina 51) ) §1 > 0
(nmirn Thmax 32) , s2>0
(nmaxa Tlmin 53) , s3>0
(nmaxa Mmax 54) ) S4 > 0

(44)
covers every odorant Fy, , ) verifying .
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We remark that if we consider the following two set of three vertices

(nmi117 Thmax 32) ) S > 0 (nmiIu Tmin» 51) 5 S1 > O
Bl - (nmaxa Tmin 53) 5 S3 > 0 5 62 - (nmin> Tmax > 52) 5 So > 0 5
(nmaxv Tmax 34) ) S4 > 0 (nmaxa Thmin» 33) ) 53 > 0

each of them satisfies condition (38). Infact, since numin < Nmax, and Nmin <
Nmax, We obtain for B; and Bs, respectively
A1 = Mmax"min (nmin - nmax) - nr2nax (nmin - nmax) + TminTmax (nmax - nmax)

= Tmax (nmin - nmax) (nmin - nmax) 7£ Oa

A2 = TminTmax (nmin - nmin) — Mmin"min (nmin - nmax) + TmaxT)min (nmin - nmax)
= TMmin (nmin - nmax) (*nmin + nmax) 7é 0

In this way, the set By covers every odorant F{,, , ) verifying the following
constraints

TlminMmax (nmax - 77) + Tlmax M min (77 - nmin)
n (nmax - nmin)

Thmin < n < Tmax» <n< Nmax;

whereas the set By covers every odorant F{, , s verifying the constraints

TIminMmax (nmax - 77) + TlmaxMmin (77 - nmin)
n (nmax - nmin)

9

Nmin < 1 < Mmax, Nmin < N <

The curve of equation

N < n < n n— NminMmax (nmax - 77) + NmaxMmin (77 - nmin)
’ n (nmax - nmin)

can be covered by all the four odorants.
For example, if we suppose that

nel0.1,18], nel0.1,18], s>0, (45)

we obtain that the convex hull of vertices

(0.170.1,81)7 51 >0
(0.1, 18,82), s2>0
(18,0.1,83), s3>0
(18,18,54), $4>0

(46)

covers every odorant F, , . verifying . In fact, if we consider the following
two triples

(0.17 18,82), So >0 (0.1,0.1,81), s1>0
(18,0.1,83), s3>0, (01, 18,52) , S3>0
(18, 18, 54) , 84>0 (18,0.1, 53) , s3>0
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we easily verify that generate the regions in Figs 2 and 3, respectively.

15 15
10 10
5 L 5
0 0
0 5 10 15 0 5 10 15
Figure 2 Figure 3

We remark that the union of the regions in Figs.2-3 is able to cover the entire
rectangle [0.1,18] x [0.1,18] in the phase plane (n,n) except for the curve of
equation

9
n=g-. 01<n<I8 (47)

Therefore, to include the curve we use the four vectors (46)). In particular,
setting
S=8 =8 =83=84=1,

we obtain that

(n, %, 1) = (a1 % (0.1,0.1,1))e(cx % (0.1,18, 1))@ (a3 % (18,0.1,1))e(cry 5 (18,18,1))

in which
18—n o 18(10n — 1) o
= —F———"7—", 03=——F—" —« Q4 = o=
27 1790 1807 °° 179n b TR0
and
180n—18 . 1 _ 181
1790 10 "= 207
a; <
3240 — 180n 181

i 151 18.
T7on @ gy <n<18

This shows that a point of the curve (47)) (except the endpoints) can be
obtained in infinitely many ways as a combination of the four vectors with
positive coefficients, and in exactly one way as a combination of the two vectors
(0.1.18,1), (18,0.1,1) with positive coefficients.
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Appendix A.6

We consider a set of four OSN responses to concentration of odorants U, V/

OSN odorant U odorant V'
1 ny =115 0y =4.5, Ky =8 x 107° ny =6.7,ny = 10.5, Ky, = 1074
2 ny =13.7,np =3.5, Ky =8 x 107 ny =3.4,ny =114, Ky = 1074
3 ny = 14.5, 7y = 2.8, Ky = 8 X 10-5 ny =4.3,ny = 12.6, Ky = 10~4
4 np=125n=19,Ky=8x10"° ny =59, =13.9, Ky, = 10~*

(48)
Owing to , the OSN responses to binary mixture U + V for r = 1 are

OSN binary mixture U +V
1 n=8374,7=7167,K =44x107°
2 7=06.256,7=7.011,K =44 x107° (49)
3 n=6517,7="7155K =44 x 1075
4 n=6.863,7=7233K=44x10"°

Since the odorant parameters (n,n, K) are constrained as follows
n €[0.1,18], n€]0.1,18], s> 0,

it is easy to verify that the OSN responses to odorants U,V and U + V are
located into the region

9
n>—, 0.1<n<I18,
on
of the plane (n,n). Then, this region is generated by the basis

(0.1,18,81), s1>0
(18, 0.1, 82) , S2>0 (50)
(18,18,53), s3>0

and setting s; = s9 = s3 = 10°, we obtain that all the OSN responses to
odorants U,V and U + V are combination of vectors , ie.

(a1 % (0.1,18,10%)) @ (a2 3 (18,0.1,10°)) @ (a3  (18,18,10°%))

according to the following values of aq, as, as
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OSN scalars odorant U odorant V  mixture U +V

o 0.011 0.037 0.048
1 o 0.094 0.042 0.136
o3 0.019 0.021 0.041
o 0.006 0.052 0.057
2 oo 0.101 0.037 0.138
a3 0.018 0.011 0.029
o 0.004 0.053 0.057
3 o9 0.106 0.030 0.136
o3 0.015 0.016 0.031
oy 0.004 0.052 0.056
4 o 0.112 0.023 0.135
a3 0.008 0.025 0.033

In the above example we considered for simplicity the mixture U + V (at
the same concentration) for all OSN. In general, different OSNs may lead to
mixtures of U and V at different concentrations.
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