1	Swimming performance of Bradyrhizobium diazoefficiens is an
2	emergent property of its two flagellar systems
3	
4	Supplementary Information
5	
6	J. Ignacio Quelas ^a , M. Julia Althabegoiti ^a , Celia Jimenez-Sanchez ^{a,b} , Augusto A. Melgarejo ^c ,
7	Verónica I. Marconi ^d , Elías J. Mongiardini ^a , Sebastián A. Trejo ^{e,f} , Florencia Mengucci ^a ,
8	José-Julio Ortega-Calvo ^b , Aníbal R. Lodeiro ^{a*}
9	
10	^a Instituto de Biotecnología y Biología Molecular (IBBM)-Facultad de Ciencias Exactas,
11	UNLP-CONICET (Argentina), ^b Instituto de Recursos Naturales y Agrobiología de Sevilla
12	(IRNAS)-CSIC (Spain), ^c Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP
13	(Argentina), ^d Facultad de Matemáticas, Astronomía y Física (FAMAF)-UNC e IFEG-
14	CONICET (Argentina), ^e Servei de Proteòmica i Biologia Estructural, Universitat Autònoma
15	de Barcelona, Bellaterra (Spain). ^f Present address: Instituto Multidisciplinario de Biología
16	Celular (IMBICE), CONICET (Argentina).
17	
18	

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of 20 21 subpolar and lateral flagellins. Polypeptide samples were taken from single bands of denaturing polyacrylamide gel (SDS-PAGE) separations of subpolar and lateral flagellin 22 subunits. These bands were trypsin-digested and analyzed essentially as described⁶⁰. For 23 MALDI-TOF target preparation, each sample was spotted onto a MALDI target plate (MTP) 24 25 384 GroundSteel plate (Bruker Daltonik, Bremen, Germany) using a standard dried droplet 26 method. Profile analyses were performed on an UltrafleXtreme MALDI TOF/TOF 27 spectrometer with FlexControl 3.4 (Bruker Daltonik, Bremen, Germany) data acquisition software. Mass spectra were acquired in reflector mode geometry using the following 28 29 settings: 600-5000 Da mass range, positive mode, and ion suppression up to 800 m/z. Mass calibration was performed using the Peptide Calibration Standard (Bruker Daltonik, 30 31 Bremen, Germany).

32 LafA1 and LafA2 (Bll6866 and Bll6865, respectively) were unambiguously identified from the SDS-PAGE low-molecular-weight band by peptide mass fingerprint 33 MALDI TOF mass spectrometry (MS) using the MASCOT tools search. Similarly, only 34 some FliC proteins were identified from the SDS-PAGE high-molecular-weight band. A 35 further analysis that was carried out by sequencing MALDI TOF-TOF MS (Supplementary 36 Table S1) allowed a clear identification of specific tryptic peptides from each flagellin 37 (FliC1, FliC2, FliC3 and FliC4). The obtained chromatograms are shown in Supplementary 38 39 Fig. S1, and the specific peptides sequenced are resumed in Supplementary Table S2. Therefore, all of the polypeptides that were encoded in bll6865-bll6866 and bll5843-bll5846 40 41 were identified in our *B. diazoefficiens* flagellin samples.

43 Table S1. Peptides identified in theoretical tryptic digestion of flagellins*.

	Meas M/z	Calc MH+	Dev.(Da)	Range	Sequence		
637373431 NP_772483 [B. japonicum USDA 110: NC 004463]							
peak 40	2454,40	2454,37	0.034	741 - 763	QSIAVSALSLANQSQQSVLQLLR		
peak 17	1681,95	1681,88	0.070	93 - 108	SIANQALQTTVGYSTK		
peak 38	2336,20	2336,16	0.041	36 - 56	KVNTALDNPTNFFTAQGLDNR		
peak 29	2208,10	2208,07	0.035	37 - 56	VNTALDNPTNFFTAQGLDNR		
peak 11	1616,92	1616,86	0.061	689 - 704	SEGSALGSNLSIVQVR		
peak 28	2102,15	2102,11	0.038	12 - 30	QNLLSLQSTADLLATTQER		
peak 46	2632,30	2632,29	0.008	501 - 526	TLTFTSFNGGTPVNVTFGDGTNGTVK		
peak 49	2734,43	2734,39	0.035	347 - 373	STTAGSLGTLVQDGSTLNIDGHTITFK		
peak 63	3746,28	3746,01	0.271	1 - 35	MSNIVLSASVRQNLLSLQSTADLLATTQERLSTGK		
637373432 NP_772484							
[B. japonicum USDA 110: NC_004463]							
peak 35	2311,14	2311,10	0.041	36 - 56	SVNSALDNPTNFFTAQSLDNR		
peak 27	2087,15	2087,11	0.045	12 - 30	QNLLSLQSTADLLATTQNR		
peak 40	2454,40	2454,37	0.034	735 - 757	QSIAVSALSLANQSQQSVLQLLR		
peak 47	2647,39	2647,36	0.029	337 - 363	TTSAASLGATIADGSTLNVDGHVITFK		
peak 32	2273,20	2273,17	0.038	628 - 648	LVFDETGKSSLNITGVTYNSK		
peak 17	1681,95	1681,88	0.070	93 - 108	SIANQALQTTVGYSTK		
peak 14	1646,95	1646,87	0.078	683 - 698	SEASSLGSNLSVVQIR		
peak 5	1359,81	1359,76	0.046	670 - 682	VLTNLNAASSTLR		
peak 22	1817,05	1816,95	0.103	318 - 336	ALGLTTSTGAGNATVNVNR		
peak 50	2915,61	2915,57	0.046	268 - 300	TVSISSGAATIAVSASQPGAAVSTAAAGAVTLK		
peak 42	2573,40	2573,39	0.007	12 - 35	QNLLSLQSTADLLATTQNRLSTGK		
peak 1	932,56	932,51	0.056	521 - 528	TLDQLNTK		
peak 7	1383,73	1383,71	0.015	636 - 648	SSLNITGVTYNSK		
637373433 NP_772485 [B. japonicum USDA 110: NC_004463]							
peak 35	2311,14	2311,10	0.041	36 - 56	SVNSALDNPTNFFTAQSLDNR		
peak 21	1785,04	1784,96	0.077	318 - 336	ALGLTTAVGGGNATVNVNR		
peak 40	2454,40	2454,37	0.034	735 - 757	QSIAVSALSLANQSQQSVLQLLR		
peak 47	2647,39	2647,36	0.029	337 - 363	TTSAASLGATIADGSTLNVDGHVITFK		
peak 32	2273,20	2273,17	0.038	628 - 648	LVFDETGKSNLSITGVTYNSK		
peak 17	1681,95	1681,88	0.070	93 - 108	SIANQALQTTVGYSTK		
peak 25	2060,14	2060,10	0.042	12 - 30	QNLLSLQSTADLLATTQSR		
peak 15	1660,97	1660,89	0.082	683 - 698	SEASSLGSNLTIVQVR		
peak 43	2576,29	2576,26	0.025	495 - 520	TLTFASFNGGTAVNVTFGDGTNGTVK		
peak 34	2293,16	2293,18	-0.022	683 - 703	SEASSLGSNLTIVQVRQDFNK		
peak 6	1375,80	1375,75	0.050	670 - 682	VLTNLNSASSTLR		
peak 57	3374,92	3374,79	0.128	649 - 682	GLGLAALTGGVDFIDNAATNKVLTNLNSASSTLR		
peak 62	3492,98	3492,79	0.185	448 - 484	LSTGVNADLSVTGTGNALNVLGLAGNTGTSTAFTAAR		
peak 23	2018,11	2018,06	0.052	649 - 669	GLGLAALTGGVDFIDNAATNK		
peak 52	3038,66	3038,61	0.050	57 - 86	ASDINNLLDGIANGVQVLQAANTGITSLQK		
peak 36	2325,34	2325,29	0.050	313 - 336	ADLLKALGLTTAVGGGNATVNVNR		
peak 60	3428,99	3428,83	0.153	301 - 336	SSTGADLSVTGKADLLKALGLTTAVGGGNATVNVNR		
peak 9	1563,89	1563,80	0.088	109 - 124	SNVSTTISGATAADLR		
peak 50	2915,61	2915,57	0.046	268 - 300	TVSISSGAATIAVSASQPGAAVSTAAAGAVTLK		
peak 61	3433,88	3433,72	0.153	485 - 520	TSGVGGITGKTLTFASFNGGTAVNVTFGDGTNGTVK		
peak 41	2546,25	2546,38	0.127	12 - 35	QNLLSLQSTADLLATTQSRLSTGK		
peak 1	932,56	932,51	0.056	521 - 528	TLDQLNTK		
peak 7	1383,73	1383,71	0.015	636 - 648	SNLSITGVTYNSK		
peak 63	3746,28	3745,92	0.362	409 - 447	AIDLATGVQTATINANGTATLATATGQTNSSINASGQLK		

637373434 NP 772486							
[B. japonicum USDA 110:							
NC_004463]							
peak 35	2311,14	2311,10	0.041	36 - 56	SVNSALDNPTNFFTAQSLDNR		
peak 21	1785,04	1784,96	0.077	318 - 336	ALGLTTAVGGGNATVNVNR		
peak 31	2265,18	2265,15	0.034	683 - 703	SEASSLGSNLSVVQVRQDFNK		
peak 27	2087,15	2087,11	0.045	12 - 30	QNLLSLQSTADLLATTQNR		
peak 40	2454,40	2454,37	0.034	735 - 757	QSIAVSALSLANQSQQSVLQLLR		
peak 47	2647,39	2647,36	0.029	337 - 363	TTSAASLGATIADGSTLNVDGHVITFK		
peak 13	1632,94	1632,86	0.081	683 - 698	SEASSLGSNLSVVQVR		
peak 4	1345,79	1345,74	0.049	670 - 682	VLSNLNAASSTLR		
peak 32	2273,20	2273,17	0.038	628 - 648	LVFDETGKSNLSITGVTYNSK		
peak 17	1681,95	1681,88	0.070	93 - 108	SIANQALQTTVGYSTK		
peak 43	2576,29	2576,26	0.025	495 - 520	TLTFASFNGGTAVNVTFGDGTNGTVK		
peak 24	2048,12	2048,07	0.054	649 - 669	GLGLAALTSGVDFIDNAATNK		
peak 57	3374,92	3374,79	0.128	649 - 682	GLGLAALTSGVDFIDNAATNKVLSNLNAASSTLR		
peak 62	3492,98	3492,79	0.185	448 - 484	LSTGVNADLSVTGTGNALNVLGLAGNTGTSTAFTAAR		
peak 52	3038,66	3038,61	0.050	57 - 86	ASDINNLLDGIANGVQVLQAANTGITSLQK		
peak 36	2325,34	2325,29	0.050	313 - 336	ADLLKALGLTTAVGGGNATVNVNR		
peak 8	1533,86	1533,79	0.076	109 - 124	SNVSATISGATAADLR		
peak 60	3428,99	3428,83	0.153	301 - 336	SSTGADLSVTGKADLLKALGLTTAVGGGNATVNVNR		
peak 51	2959,61	2959,58	0.028	670 - 698	VLSNLNAASSTLRSEASSLGSNLSVVQVR		
peak 50	2915,61	2915,57	0.046	268 - 300	TVSISSGAATIAVSASQPGAAVSTAAAGAVTLK		
peak 61	3433,88	3433,72	0.153	485 - 520	TSGVGGITGKTLTFASFNGGTAVNVTFGDGTNGTVK		
peak 42	2573,40	2573,39	0.007	12 - 35	QNLLSLQSTADLLATTQNRLSTGK		
peak 55	3190,69	3190,62	0.072	704 - 734	SLINVLQTGSSNLTLADTNTEAANSQALSTR		
peak 1	932,56	932,51	0.056	521 - 528	TLDQLNTK		
peak 7	1383,73	1383,71	0.015	636 - 648	SNLSITGVTYNSK		
peak 64	3746,28	3745,92	0.362	409 - 447	AIDLATGVQTATINANGTATLATATGQTNSSINASGQLK		
peak 66	3824,33	3824,00	0.328	87 - 124	LIDSAKSIANQALQTTVGYSTKSNVSATISGATAADLR		
peak 65	3823,25	3822,91	0.343	699 - 734	QDFNKSLINVLQTGSSNLTLADTNTEAANSQALSTR		
peak 63	3592,05	3591,87	0.179	670 - 703	VLSNLNAASSTLRSEASSLGSNLSVVQVRQDFNK		

45 *All matches between spectrum mass peak and theoretical tryptic digest peptides of each

46 flagellin are shown. Grey rows: specific peptides from each flagellin. Specific peptide

47 corresponds to sequences present only in one flagellin but not in the others.

48

50 **637373431 NP_772483:**

51 Peak 28

53 Peak 38

52

55 **637373432 NP_772484:**

56 Peak 5

Figure S1

637373433 NP_772485:

65 Peak 15

Figure S1 (cont.)

74 Peak 4

Figure S1 (cont.)

Fig. S1. Sequencing of the specific peptides of each flagellin by MALDI TOF-TOF MS². Sequence assignment was performed
using Biotools 3.2 SR4 software with a tolerance of 0.6 Da for internal fragment assignments and 0.15 Da for parental peak.
Specific peptide sequencing was used to identify each flagellin with a high confidence degree.

Table S2. Specific unique peptides from FliC1, FliC2, FliC3 and FliC4 sequenced by MALDI TOF-TOF.

Flagellins	Meas M/z	Calc MH+	Dev.(Da)	Range	Sequence
FliC1					
637373431 NP_772483 [B. japonicum					
USDA 110: NC_004463]					
peak 28	2102,15	2102,11	0.038	12 - 30	QNLLSLQSTADLLATTQER
peak 38	2336,20	2336,16	0.041	36 - 56	KVNTALDNPTNFFTAQGLDNR
FliC2					
637373432 NP_772484 [B. japonicum					
USDA 110: NC_004463]					
peak 5	1359,81	1359,76	0.046	670 - 682	VLTNLNAASSTLR
peak 14	1646,95	1646,87	0.078	683 - 698	SEASSLGSNLSVVQIR
peak 22	1817,05	1816,95	0.103	318 - 336	ALGLTTSTGAGNATVNVNR
FliC3					
637373433 NP_772485 [B. japonicum					
USDA 110: NC_004463]					
peak 15	1660,97	1660,89	0.082	683 - 698	SEASSLGSNLTIVQVR
peak 25	2060,14	2060,10	0.042	12 - 30	QNLLSLQSTADLLATTQSR
peak 35	2311,14	2311,10	0.041	36 - 56	SVNSALDNPTNFFTAQSLDNR
FliC4					
637373434 NP_772486 [B. japonicum					
USDA 110: NC_004463]					
peak 4	1345,79	1345,74	0.049	670 - 682	VLSNLNAASSTLR
peak 24	2048,12	2048,07	0.054	649 - 669	GLGLAALTSGVDFIDNAATNK

88 Some trajectories are difficult to classify. The complexity of the trajectories observed in 89 this work prevented us to classify them without a quantitative criterion. Examples of 90 trajectories that contained different features and could not be unambiguously classified are

Fig. S2. Examples of trajectories difficult to classify in the classes defined in the main article: curved (a), linear with RR
changes in direction and then circular (b); circular with an RRF change in direction (c); wide open curve (d); curved with a
linear stretch in the middle (e). Coordinate axis values correspond to those of Fig. 2a-d in the main text. The numbers next
to the trajectories indicate the mean speeds in micrometers per second (µm·s⁻¹).

97

98 Values of Trajectory Index (TRAIN) for the trajectories shown in the main article. To

99 better illustrate how *TRAIN* was calculated, we present in Supplementary Table S3 the

values of all the variables that gave rise to TRAIN in the trajectories shown in Figs. 2, 4 and

- 101 S2. In this way, the reader may contrast the numerical values of NGDR, s, $<\cos\alpha>$ and c
- against the trajectories to appreciate the extent to which TRAIN represents their shapes.

Trajectory TRAIN variables TRAIN NGDR s <cosa> С Circular (2e) 0.13 1.18 0.95 0 1.09 Circular (4a) 0.12 0.77 0.98 0 1.19 Linear (2f) 0.97 0.34 0.95 0 1.99 5 RRF (2**h**) 0.20 1.91 0.89 0.60 7 RRF (4d) 0.13 4.56 0.80 0.21 RRF (4g) 0.60 2.78 0.90 2 1.06 RR (2g) 0.55 6.17 0.86 7 0.36 Rough (2i) 0.23 29 0.54 1.25 0.46 Diffusive (2j) 6.14 49 $2 \cdot 10^{-6}$ 0.12 0.32 Curved (S2a) 0.51 0.72 0.98 0 1.62 Circular/RR (S2b) 0.10 3.80 0.92 3 0.78 Circular/RRF (S2c) 0.11 4.17 0.91 3 0.76 Wide open curve (S2d) 0.85 0.34 0.98 0 1.94 Curved/linear (S2e) 0.56 0.91 0.97 0 1.59

Table S3. TRAIN calculation of the trajectories exemplified in this work*

*TRAIN =NGDR^s + $\langle \cos \alpha \rangle^{c}$

106

107 More images of $\Delta lafA$ cells from soft agar plates with viscosity at 80 mPa s. These

transmission electron micrographs show the reproducibility of the flagellar sizes and

109 disposition with respect to the cell body.

110

Fig. S3. Ten Δ *lafA* cells with short and curved subpolar flagella, often surrounding the cell body (scale bar: 0.5 µm).

112 **References**

- 113 60. Watt, S. A., Patschkowski, T., Kalinowski, J. & Niehaus, K. Qualitative and quantitative
- proteomics by two-dimensional gel electrophoresis, peptide mass fingerprint and a
- chemically-coded affinity tag (CCAT). J. Biotechnol. **106**, 287-300;
- 116 DOI:10.1016/j.jbiotec.2003.07.014 (2003)