Supporting Information

Modulation of electronic properties from stacking orders and spin-orbit coupling for 3R-type MoS²

Xiaofeng Fan^{*a,b,**}, W. T. Zheng^{*b*}, Jer-Lai Kuo^{*d*}, David J. Singh^{*c*}, C.Q. Sun^a and W. Zhu^{a,†}

- a. NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
- b. College of Materials Science and Engineering, Jilin University, Changchun 130012, China
- c. Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA
- d. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan

*, \dagger Correspondence and requests for materials should be addressed, xffan ω jlu.edu.cn (X. F. Fan); ewzhu@ntu.edu.sg (W. Zhu)

Fig. S1

Fig. S1 Band structures of 2-layer $MoS₂$ with ab-stacking near the bottom of conduction band at Λ (a) and K point (b), and schematic of conduction band splitting at Λ and K point due to spin-orbit coupling and layer's coupling (c)

Fig. S2 Isosurface of band-decomposed charge density of six states of 3-layer $MoS₂$ with aba stacking order, at the top of valance band of K point (in Fig. 5a) including the states $-\vert 1+3\uparrow\rangle$ -1(a), ~ $\vert 1+3\uparrow\rangle$ -2(b), ~ $\vert 2\uparrow\rangle$ (c), ~ $\vert 1+3\downarrow\rangle$ -1(d), ~ $\vert 1+3\downarrow\rangle$ -2(e) and ~ $\vert 2\downarrow\rangle$ (f).

The spin-up states ~|1+3^{\uparrow})-1and ~|1+3 \uparrow ²)-2 are almost degenerate. The spin-up states $\sim|1+3\sqrt{2}$ and $\sim|1+3\sqrt{2}$ are almost degenerate. This may due to the being of mirror symmetry of aba stacking.

Fig. S3 Isosurface of band-decomposed charge density of six states of 3-layer $MoS₂$ with aba stacking order, at the top of valance band of K point (in Fig. 5a) including the states $\langle -|1 \uparrow \rangle$ (a), $\sim |2 \uparrow \rangle$ (b), $\sim |3 \uparrow \rangle$ (c), $\sim |1 \downarrow \rangle$ (d), $\sim |2 \downarrow \rangle$ (e) and $\sim |3 \downarrow \rangle$ (f).

Fig. S4 Band structures of bulk $2H-MoS₂$ (a) and $3R-MoS₂$ (b) with spin-orbit coupling.

The band splitting of $2H-MoS_2$ at CB-K is 208 meV and that of $3R-MoS_2$ at CB-K is 149 meV.

Model Hamiltonian

The model Hamiltonian for tree-layer $MoS₂$

$$
H(k) = \begin{pmatrix} E_0(k) & M_1(k) & M_2(k) \\ M_1^*(k) & E_0(k) & M_1(k) \\ M_2^*(k) & M_1^*(k) & E_0(k) \end{pmatrix}
$$

The model Hamiltonian for four-layer $MoS₂$

$$
H(k) = \begin{pmatrix} E_0(k) & M_1(k) & M_2(k) & M_3(k) \\ M_1^*(k) & E_0(k) & M_1(k) & M_2(k) \\ M_2^*(k) & M_1^*(k) & E_0(k) & M_1(k) \\ M_3^*(k) & M_2^*(k) & M_1^*(k) & E_0(k) \end{pmatrix}
$$

The model Hamiltonian is used to analyze the splitting of band splitting near band gap and understand the layer's coupling. $M_1(k)$, $M_2(k)$ and $M_3(k)$ represent the coupling parameters of nearest-neighbor, second near-neighbor and third near-neighbor layer-coupling with same k point and same energy level , respectively.

Table S1. Band splitting values of the top of valance bands at Γ and K points (VB- Γ and VB-K) and the bottom of conduction bands at Λ and K points (CB- Λ and CB-K) for multi-layer 3R-type MoS₂ including 2L-ab, 3L-aba, 3L-abc, 4L-abab and 4L-abca with the different layers and stacking orders, calculated by DFT and fitted by model Hamiltonian (TM). Note that Δ_1 , Δ_2 and Δ_3 represent the splitting values between the nearest-neighbor energy levels and Δ is for total splitting value.

It is obvious that the values of band splitting from model Hamiltonian are consistent with that from DFT.