Supporting Information

Modulation of electronic properties from stacking orders and spin-orbit coupling for 3R-type MoS₂

Xiaofeng Fan^{*a,b,**}, W. T. Zheng^{*b*}, Jer-Lai Kuo^{*d*}, David J. Singh^{*c*}, C.Q. Sun^{*a*} and W. Zhu^{*a,†*}

- a. NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
- b. College of Materials Science and Engineering, Jilin University, Changchun 130012, China
- c. Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA
- d. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan

*, † Correspondence and requests for materials should be addressed, xffan@jlu.edu.cn (X. F. Fan); ewzhu@ntu.edu.sg (W. Zhu)

Fig. S1

Fig. S1 Band structures of 2-layer MoS_2 with ab-stacking near the bottom of conduction band at Λ (a) and K point (b), and schematic of conduction band splitting at Λ and K point due to spin-orbit coupling and layer's coupling (c)

Fig. S2 Isosurface of band-decomposed charge density of six states of 3-layer MoS₂ with aba stacking order, at the top of valance band of K point (in Fig. 5a) including the states $\sim |1+3\uparrow\rangle - 1(a), \sim |1+3\uparrow\rangle - 2(b), \sim |2\uparrow\rangle(c), \sim |1+3\downarrow\rangle - 1(d), \sim |1+3\downarrow\rangle - 2(e)$ and $\sim |2\downarrow\rangle$ (f).

The spin-up states $\sim |1+3\uparrow\rangle$ -1 and $\sim |1+3\uparrow\rangle$ -2 are almost degenerate. The spin-up states $\sim |1+3\downarrow\rangle$ -1 and $\sim |1+3\downarrow\rangle$ -2 are almost degenerate. This may due to the being of mirror symmetry of aba stacking.

Fig. S3 Isosurface of band-decomposed charge density of six states of 3-layer MoS₂ with aba stacking order, at the top of valance band of K point (in Fig. 5a) including the states $\sim |1\uparrow\rangle$ (a), $\sim |2\uparrow\rangle$ (b), $\sim |3\uparrow\rangle$ (c), $\sim |1\downarrow\rangle$ (d), $\sim |2\downarrow\rangle$ (e) and $\sim |3\downarrow\rangle$ (f).

Fig. S4 Band structures of bulk $2H-MoS_2$ (a) and $3R-MoS_2$ (b) with spin-orbit coupling.

The band splitting of 2H-MoS₂ at CB-K is 208 meV and that of 3R-MoS₂ at CB-K is 149 meV.

Model Hamiltonian

The model Hamiltonian for tree-layer MoS₂

$$H(k) = \begin{pmatrix} E_0(k) & M_1(k) & M_2(k) \\ M_1^*(k) & E_0(k) & M_1(k) \\ M_2^*(k) & M_1^*(k) & E_0(k) \end{pmatrix}$$

The model Hamiltonian for four-layer MoS₂

$$H(k) = \begin{pmatrix} E_0(k) & M_1(k) & M_2(k) & M_3(k) \\ M_1^*(k) & E_0(k) & M_1(k) & M_2(k) \\ M_2^*(k) & M_1^*(k) & E_0(k) & M_1(k) \\ M_3^*(k) & M_2^*(k) & M_1^*(k) & E_0(k) \end{pmatrix}$$

The model Hamiltonian is used to analyze the splitting of band splitting near band gap and understand the layer's coupling. $M_1(k)$, $M_2(k)$ and $M_3(k)$ represent the coupling parameters of nearest-neighbor, second near-neighbor and third near-neighbor layer-coupling with same k point and same energy level, respectively.

Table S1. Band splitting values of the top of valance bands at Γ and K points (VB- Γ and VB-K) and the bottom of conduction bands at Λ and K points (CB- Λ and CB-K) for multi-layer 3R-type MoS₂ including 2L-ab, 3L-aba, 3L-abc, 4L-abab and 4L-abca with the different layers and stacking orders, calculated by DFT and fitted by model Hamiltonian (TM). Note that Δ_1 , Δ_2 and Δ_3 represent the splitting values between the nearest-neighbor energy levels and Δ is for total splitting value.

Stacking way	VB-Γ(eV)		CB-Λ(eV)		$CB-K(10^{-2} eV)$		$VB-K(10^{-2} eV)$	
2L-ab	DFT	TM	DFT	TM	DFT	TM	DFT	TM
Δ	0.6389	0.6389	0.3058	0.3058	5.43	5.43	6.11	6.11
3L-aba								
Δ_1	0.2732	0.2757	0.2699	0.2698	5.5370	5.5340	0.7900	0.7920
Δ_2	0.5324	0.5307	0.1377	0.1378	0.1100	0.1100	6.0420	6.0420
Δ	0.8057	0.8604	0.4076	0.4076	5.6470	5.6440	6.8320	6.8340
3L-abc								
Δ_1	0.3052	0.3058	0.2278	0.2266	3.6910	3.6950	5.4900	5.4930
Δ_2	0.5228	0.5218	0.1926	0.1936	5.3490	5.3450	4.2960	4.2930
Δ	0.8281	0.8276	0.4204	0.4202	9.0400	9.0400	9.7860	9.7860
4L-abab								
Δ_1	0.1707	0.1708	0.1572	0.1580	0.9750	0.9750	0.8110	0.8040
Δ_2	0.3067	0.3066	0.2001	0.2006	4.2560	4.2220	5.1840	5.1760
Δ_3	0.4214	0.4204	0.1017	0.1004	0.7360	0.7750	1.1500	1.1640
Δ	0.8988	0.8978	0.4591	0.4590	5.9670	5.9720	7.1450	7.1440
4L-abca								
Δ_1	0.1810	0.1809	0.1700	0.1698	4.0870	4.0730	5.6170	5.6640
Δ_2	0.3037	0.3030	0.1798	0.1808	4.4640	4.4090	4.4890	4.4760
Δ_3	0.4317	0.4319	0.1357	0.1357	5.4900	5.5470	4.6540	4.6480
Δ	0.9164	0.9159	0.4855	0.4862	14.0410	14.0290	14.7600	14.7880

It is obvious that the values of band splitting from model Hamiltonian are consistent with that from DFT.