

Supplementary Figure 1. Core punch sampling of whole autopsy brains. An average of 6 core punch samples from right and left brainstem (midbrain, pons, medulla) and an average of 10 core punch samples from right and left cerebellum and cerebrum (frontal lobe, parietal lobe, temporal lobe, occipital lobe, lateral ventricles, thalamus, hippocampus) were collected for molecular analyses from frozen and formalin fixed paraffin embedded (FFPE) whole autopsy brains from nine DIPG patients (N=134).

Supplementary Figure 2

(a) <u>DIPG1 (21y 2m; Male; H3.1 K27M)</u>

(b) DIPG2 (6y 10m; Male; H3.1 K27M)

(c) DIPG7; 10y 8m; Female; H3.3 K27M

Tumor Locations

H3-K27me3 H3-K27M

H&E

Supplementary Figure 2. Immunohistochemical staining of several neuroanatomical locations in DIPG autopsies. Histological sections were probed for Ki67 (proliferation marker), histone 3 K27M mutant (H3-K27M), and histone 3 K27 trimethylation (H3-K27me3) stains in (a) DIPG1 (b) DIPG2 (c) DIPG7 tumor (top) and normal (bottom) (d) DIPG8 and (e) DIPG9. Patient age, gender, and histone 3 mutation status are indicated above each histological staining panel. Tumor spread is seen in proximal (cerebellum and medulla) and distant (thalamus and frontal lobe) brain locations from the primary tumor in the pons. In DIPG9 (e) the area showing normal hisology had tumor infiltrate as seen using the specific anti-H3K27M staining or in our molecular studies (Supplementary Table 1). Staining performed on several areas from normal brain DIPG7 (c, bottom) shows no unspecific anti-H3K27M staining in concordance with molecular results (Supplementary Table 1). *Scale bar: 50µm*.

Supplementary Figure 3

Supplementary Figure 3. Tumor extension in DIPGs. Neuroanatomical location and percent frequency of tumor extension from pons to the cerebellum, thalamus, lateral ventricles, hippocampus, frontal and occipital lobes (color key on left) in brains from nine DIPG patients. Tumor extension was detected by the presence of H3-K27M driver mutation assessed by whole exome sequencing, MiSeq targeted sequencing, and digital droplet PCR molecular analyses. Numbers in parentheses represent the percentage of tumor extension (number of patients with tumor extension/number of patients analyzed).

Supplementary Figure 4

(A)

Supplementary Figure 4. Sagittal and axial view MRI of DIPG4 and DIPG7. (A) DIPG patient with non-enhancing lesion in the pons and absence of tumor extension to the cerebral cortex (DIPG4). (B) DIPG patient with non-enhancing pontine lesion and tumor extension to the lateral ventricles (DIPG7). These MRIs were taken from patients 2 weeks (DIPG7) and 3 months (DIPG4) before death, respectively.

DIPG1-Midbrain

DIPG2-Crebellum 1

DIPG2-Crebellum 2

DIPG2-Crebellum 3

DIPG2-Frontal Lobe 3

DIPG2-Medulla

DIPG2-Occipital Lobe 2

DIPG2-Parietal Lobe 4_lobe

DIPG2-Pons 1

DIPG2-Pons 2

DIPG2-Pons 3

DIPG2-Temporal Lobe 3

DIPG2-Thalamus

DIPG3-Pons 1

DIPG3-Pons 2

DIPG4-Pons 1

DIPG5-Medulla

DIPG5-Midbrain 1

DIPG5-Pons 1

DIPG6-Midbrain

0.5	H3F3A	PIK3CA				ATRX
0.4	MYgN ID2	PDGFRA	METEGER1 EGER MYC CDK6	CCNBCND2 SETD1B	тр53	QLIG2
0.3 1.3						
0.2						
0.1						
0.0						

DIPG6-Pons 1

DIPG6-Pons 2

DIPG6-Pons 3

DIPG6-Pons 4

0.0

DIPG6-Pons 5

DIPG7-Cerebellum 1

DIPG7-Cerebellum 2

DIPG7-Medulla

DIPG8-Cerebellum 1

DIPG8- Frontal Lobe 1

DIPG8-Medulla 1

DIPG8-Medulla 2

DIPG8-Medulla 3

DIPG8-Midbrain

DIPG8-Occipital Lobe

DIPG8-Parietal Lobe 2

DIPG8-Pons 1

DIPG8-Pons 2

DIPG8-Ventricle

0.4 0.5	MYCN ID2 H3F3A PDGFRA	EGINAMET FOR WO	CCND2 PTPN11 CCND1	тр53
BAF-0.3 0.2 0.3 I I				
0.1				

DIPG9-Cerebellum 3

DIPG9-Frontal Lobe 3

DIPG9-Medulla 1

DIPG9-Midbrain

DIPG9-Parietal Lobe 3

DIPG9-Pons 1

DIPG9-Temporal Lobe 3

DIPG9-Ventricle

frequency from 50% as well as normalized coverage data (See online methods). data was used to estimate copy number variation events in DIPG samples using deviation of B allele Supplementary Figure 5: CNV calling using whole exome sequencing data. Whole exome sequencing

DIPG2-Cerebellum3

DIPG3-Pons2

DIPG5-Pons1

DIPG6-Pons5

DIPG7-Cerebellum1

DIPG8-Midbrain

DIPG9-Midbrain

Supplementary Figure 6: OncoScan CNV arrays were used on selected samples to validate whole exome sequencing based CNV calling. Using the same DNA used for whole exome sequencing, one sample from each patient was selected to assess copy number variation events (except for patient DIPG4 for which no material was available). OncoSan results shown here correlated with whole exome based CNV calling.

Supplementary Figure 7: Evolutionary reconstruction and non-synonymous somatic mutations allele frequency values for six patients (not included in Figure 2). Left: Histograms represent the raw allele frequency values from whole exome sequencing data (Supplementary table 2.) Right: Evolutionary trees reconstructed using CNV corrected allele frequencies from the deep amplicon sequencing data targeting the candidate genes found in whole exome sequencing.

*We had access to whole exome sequencing data from only one sample for patient DIPG4. The evolutionary tree for this patient was reconstructed based on deep amplicon sequencing data, except the frequency values were not corrected for CNV events (due to lack of whole exome sequencing data on the rest of the samples from this patient.) Lacking a robust correction for copy number, we consider this phylogeny less reliable and hence do not discuss it in the main text.

Supplementary Figure 8

Supplementary Figure 8. **Clustering analysis of global DNA methylation from various neuroanatomical locations for four DIPGs**. Samples representing histone 3 K27M and wild type neuroanatomical locations for DIPG2 (H3.1-K27M), DIPG3 (H3.2-K27M), DIPG7 and DIPG9 (H3.3-K27M) were analyzed using unsupervised hierarchical clustering for the 5000 most variable probes. Global DNA methylation clustering demonstrates clustering patterns based on histone 3 mutation status, rather than neuroanatomical location. DIPG9 thalamus 1 is a H3-K27M sample clustering with the H3-WT group possible due to the presence of only few tumor cells only detectable by sensitive genomic screening and which based on their low content do not alter the global methylation profile.

Supplementary Figure 9

DIPG7

DIPG9

DIPG8

Supplementary Figure 10

Supplementary Figure 10: Summary of integrated dataset of Diffuse Intrinsic Pontine Glioma samples from four published studies (n=121) and present work (n=9) showing distribution of histone 3 mutation status as well as mutation combinations of oncohistone partners for all patients. For a detailed list, please refer to Supplmentary Table 15.

Supplementa	ry Table 1: Clir	nical and Mole	ecular Data fro	om 134 Punch C	ores Taken F	rom Autopsy B	rains of 9 DIPG pati	ents															
			P	ATIENT INFORM Treatr	nent					MISEQ	RUN 1 (2014)		MOLECULAR ANALYS MISEQ RUN 2 (2015)	ies .			Whole Exo	me Sequencing		IMN	MUNOHI: Stains	TOCHEMI	ISTRY
Patient ID	Diagnosis	Gender	Age	Chemothera py	Radiation	Sample Name	Neuroanatomical Location	Tissue Type	ddPCR Run1	Histone 3	Other Genes	Histone 3	Other Genes	Methylation	RNA-Seq	ddPCR Run2	Histone 3	Other Genes	H&E	Ki67	H3 K27M	H3 K27me3	Comments
						DIPG1- Frontal Lobe				WT					1 core	WT	WT	no mutations					
						1 DIPG1-	В	Frozen							punch					\square			
						DIPG1-	В	FFPE											v		v	v	
						Cerebellum 1	E	FFPE											٧	٧	٧	٧	
						DIPG1- Cerebellum 2	E	FFPE				WT				H3.1B K27M (4.6%)	failed	failed	٧	٧	٧	٧	
						DIPG1- Ventricle 1	F	FFPE											٧	٧	٧	٧	
						DIPG1- Ventricle 2 DIPG1-	F	FFPE											٧	٧	٧	٧	
						Hippocampu s	G	FFPE											٧	٧	٧	٧	
				SAHA.		DIPG1- Thalamus	н	FEPE											٧	v	٧	v	cerebral
DIPG1 (H3.1)	DIPG (GBM)	Male	21y 2m	Avastin, and Irinotecan	Yes	DIPG1- Midbrain		Freedo				H3.1B K27M	PIK3R1 splicing (24.85%), CTNNA2 A260S (25.33%), RECQL5 splicing		1 Core Punch	H3.1B K27M (25%)	H3.1 K27M	CTNNA2 A260S; PIK3R1 splicing					cortex & cerebellum is FFPE
						DIPG1-Pons		riozen		H3.1 K27M (52%)		H3.1B K27M	PIK3R1 splicing (23.75%), CTNNA2 A260S (27.39%), RECQL5 splicing		1 Core Punch	H3.1B K27M (34%)	H3.1 K27M	CTNNA2 A260S; PIK3R1 splicing					
						DIPG1-Pons	J	Frozen				(24.4%) H3.1B K27M	(21.99%) PIK3R1 splicing (29.33%), CTNNA2 A260S (33.04%), RECQL5 splicing				H3.1 K27M	CTNNA2 A260S;					
						2 DIPG1-Pons	J	Frozen				(29%)	(18.02%) PIK3R1 splicing (21.02%), CTNNA2 A2605 (22.55%), RECOL5 splicing		1 Core	H3.1B K27M	H3 1 K27M	CTNNA2 A260S;		\square			
						3 DIPG1-Pons	J	Frozen		H3.1 K27M		(23.1%)	(16.85%) PIK3R1 splicing (21.97%), CTNNA2		Punch	(23%) H3.1B K27M	10.11270	PIK3R1 splicing		\square			
						4	J	Frozen		(19%)		H3.1B K27M (18.56%)	A260S (20.6%), RECQL5 splicing (21.14%)		Punch	(23%)	H3.1 K27M	PIK3R1 splicing					
						DIPG1-Pons		FEDE											٧	v	v	٧	
						DIPG1-Pons	,												v	v	v	v	
						6 DIRG1-	J	FFPE		H3 1 K27M			PIK3R1 splicing (25.60%), CTNNA2		1 Core	H3 18 K27M		CTNNA2 A2605-					
						Medulla	к	Frozen		(24%)		H3.1B K27M (25.43%)	A260S (24.21%), RECQL5 splicing (18.95%)		Punch	(30%)	H3.1 K27M	PIK3R1 splicing					
						Temporal				WT				cluster with					٧	٧	٧	v	
						Lobe 1 DIPG2-	A	FFPE						K27M group						$\left - \right $			
						Temporal		5505	WT														
						DIPG2-	A	FFPE															
						Temporal	^	Frozen				WT				WT	WT	no mutations		ļļ			
						DIPG2-	<u> </u>	riozen															
						Temporal Lobe 4	А	FFPE	WT											ļļ			
						DIPG2-			WT					Does not									
						Frontal Lobe	В	FFPE	WI					K27M group									
						DIPG2- Frontal Lobe			WT					Does not cluster with					v	v	v	v	
						2	В	FFPE						K27M group						<u> </u>			
						Frontal Lobe	в	Frozen		WT		WT				WT	WT	no mutations					
						DIPG2-		Hozen															
						DIPG2-	с	FFPE	vv I											Н			
						Parietal Lobe	с	FFPE	WT										٧	V	V	٧	
						Parietal Lobe 3	с	FFPE	WT														
						DIPG2- Parietal Lobe 4	с	Frozen				WT				WT	WT	no mutations					

			I	1 1	1	DIPG2-																
						Parietal Lobe										WT	WT	no mutations				
						5 DIPG2-	L L	Frozen				WI										
						Occipital	D	FEDE	WT													
						DIPG2-	U															
						Occipital	D	Frozen				WT				WT	WT	no mutations				
						DIPG2-	5	Hoten				H3.1B K27M	PIK3CA H1047R (0.65%), ACVR1			H3.1B K27M						
DIPG2 (H3.1)	DIPG (GBM)	Male	6y 10m	N/A	Yes	Cerebellum 1	E	Frozen				(15.49%)	G328V (23.69%), MAX R51Q (0.62%), SETD5 K527Q (0.77%)			(16%)	H3.1 K27M	ACVR1 G328V				
						DIPG2-										6 M A						
						Cerebellum 2	Е	Frozen				WT				failed	WI	no mutations				
						DIPG2-										WT	WT					
						3	E	Frozen				wт				VVI	VV I	no mutations				
						DIPG2- Cerebellum										WT	WT	no mutations				
						4	E	Frozen				WT						no mutations				
						DIPG2- Cerebellum				WT				Does not cluster with					v	vv	v	
						5	E	FFPE						K27M group								
						Cerebellum				WT				Does not cluster with					v	v v	v	
						6	E	FFPE						K27M group						_		
						DIRGO				H2 1 K27M	ACV/R1	H2 10 V27M	PIK3CA H1047R (23.94%), ACVR1			H2 10 K27M		ACVR1 G328V;				
						Thalamus				(49%)	G328V (70%)	(45.03%)	PTEN A126S (16.34%), SETD5 K527Q			(45%)	H3.1 K27M	MAX R51Q;				
							н	Frozen					(0.34%)					PTEN A126S				
						DIPG2-Pons				H3.1 K27M	ACVR1	H3.1B K27M	PIK3CA H1047R (0.36%), ACVR1 G328V (57.73%), MAX R510			H3.1B K27M		ACVR1 G328V:				
						1		_		(37%)	G328V (57%)	(33.44%)	(16.27%), PTEN A126S (1.49%),			(41%)	H3.1 K27M	MAX R51Q				
							J	Frozen					SETD5 K527Q (0.62%) PIK3CA H1047R (42.47%), ACVR1									
						DIPG2-Pons						H3.1B K27M	G328V (58.13%), MAX R51Q (0.68%),			H3.1B K27M	H3.1 K27M	ACVR1 G328V;				
						2	J	Frozen				(37.14%)	K527Q (44.08%)			(30%)		PIK3CA H1047K				
						DIRG2-Rons						H3 18 K27M	PIK3CA H1047R (0.66%), ACVR1 G328V (55.21%) MAX 8510		1 Core	H3 18 K27M		ACVR1 G328V				
						3						(33.22%)	(11.09%), PTEN A126S (0.28%),		Punch	(39%)	H3.1 K27M	MAX R51Q;				
							J	Frozen					SETD5 K527Q (0.37%)									
						DIPG2-Pons 4				H3.1 K27M (49%)	ACVR1 G328V (70%)			Clusters with K27M group					v	v v	٧	
						DIPG2-Pons	J	FFPE						0.11								
						5	J	FFPE											v	<u>v</u> v	v	
						6	J	FFPE											٧	v v	v	
						DIPG2-						H3.1B K27M	PIK3CA H1047R (0.78%), ACVR1		1 Core	H3.1B K27M	H3 1 K27M	ACVR1 G328V;				
						Medulla	к	Frozen				(20.05%)	SETD5 K527Q (0.49%)		Punch	(26%)	H3.1 K2/W	MAX R51Q;				
						DIPG3-				WT				Does not cluster with	1 Core		WT	no mutations				
						Cerebrum	N/A	Frozen						K27M group	Punch					_		
						DIPG3-				WT				Does not cluster with	1 Core		wт	no mutations				
DIPG3 (H3.2)	DIPG (GBM)	Female	7y 5m	No	Yes	Cerebellum	E	Frozen						K27M group	Punch					_		
						DIPG3-Pons				H3.2 K27M (8%)	ACVR1 G328V (47%)			Clusters with K27M group	1 Core Punch		H3.2 K27M	ACVR1 G328V				
						-	J	Frozen		(0,0)	03201 (4770)			itz/iti Broup	- unen					_		
						DIPG3-Pons 2				H3.2 K27M (5%)	ACVR1 G328V (57%)			Clusters with K27M group	1 Core Punch		H3.2 K27M	ACVR1 G328V; PIK3CA H1047R				
						DIPG4-	J	Frozen						0.00								
						Frontal Lobe		Frances		WT						WT	WT	no mutations				
						DIPG4-	в	rruzen														
						Frontal Lobe	P	FEDE											٧	v v	V	
						DIPG4-	B	THE											v	v	v	
						Cerebellum DIPG4-Pons	E	FFPE		+		H3.3 K27M	ACVR1 R206H (29.01%). TP53 C3F			H3.3 K27M		TP53 C3F:		<u> </u>		
						1	J	Frozen				(46.47%)	(57.84%), IL13RA2 Y12D (28.91%)			(44%)	H3.3 K27M	ACVR1 R206H				
						DIPG4-Pons				H3.3 K27M	ACVR1	H3.3 K27M	ACVR1 R206H (34.01%), TP53 C3F									
						2 DIRG4-Ropp	J	Frozen		(43%)	N200H (30%)	(50.29%)	(01.04%), ILISKAZ 112D (19.94%)							_		cerebral
DIPG4 (H3.3)	DIPG (GBM)	Female	5y 6m	Capecitabine	Yes	3	J	FFPE											V	v v	V	cortex &

	. i	1		1	i -	1	1	-		1	r		1		1	1	1		r 1		1	
						DIPG4-Pons		Frozon				H3.3 K27M	ACVR1 R206H (36.35%), TP53 C3F		1 Core							is FFPE
						4 DIPG4-Pons	,	FIOZEII				(30.96%)	(00.37%), ILISKAZ 112D (18.07%)		Funch							
						5	J	FFPE											v	V	v	-
						DIPG4-Pons		Frozen							2 Core Punches							
						DIPG4-Pons	1	Hoten				H3.3 K27M	ACVR1 R206H (49.88%), TP53 C3F		Tunenes							
						7 DIDC4 Base	J	Frozen				(29.61%)	(60.96%), IL13RA2 Y12D (0.59%)									-
						8	J	Frozen				(12.78%)	(42.57%), IL13RA2 Y12D (1.75%)									
						DIPG4-Pons													v v	٧	v	
						9 DIPG4-Pons	J	FFPE														
						10	J	Frozen														
						DIPG5-													vv	v	v	
						Frontal Lobe	В	FFPE														
						DIPG5-			WT													
						1	Е	FFPE	VV I										, v		v	
						DIPG5-																
						Cerebellum 2	F	FEPF		WT		WT				WT	failed	failed	v	v	v	
						_	-						PPM1D W427X (43 52%) M4P3K15									
						DIPG5- Midbrain 1				H3.3 K27M		H3.3 K27M	Y368fs (17.65%), TNIK R364S (1.65%),		1 Core	H3.3 K27M	H3.3 K27M	PPM1D W427X				cerebral
DIPG5 (H3.3)	DIPG (GBM)	Male	8y	N/A	N/A	Wildbrain 1	I.	Frozen		(70%)		(57.00%)	PPP1CA E231K (36.25%)		runen	(5676)						cortex &
						DIPG5-		- · · · ·		WT						WT	WT	no mutations				is FFPE
						DIPG5-	1	Frozen				WI										
						Midbrain 3	I	FFPE											v	v	v	
						DIPG5-Pons				H3.3 K27M		H3.3 K27M	ATRX D94fs (37.84%), TP53 A175fs (8.08%), PPM1D W427X (13.8%).		2 Core	H3.3 K27M	H3.3 K27M	ATRX D94fs; TP53 A175fs:				
						1	J	Frozen		(47%)		(42.23%)	TNIK R364S (52.98%)		Punches	(44%)	115.5 162711	PPM1D W427X				
						DIPG5-Pons		FEDE											v	٧	v	
						2	,	FFFE		112 2 1/2714			T052 M 75(- (40 759(), 00 M 0									
						Medulla		- · · · ·		H3.3 K27IVI (44%)		(48.79%)	W427X (4.09%), TNIK R364S (30.23%)		Punch	H3.3 K2/M (44%)	H3.3 K27M	TP53 A175fs;				
						DIPG6-	ĸ	Frozen														
						Frontal Lobe	_	_		WT						WT	WT	no mutations				
						1 DIPG6-	В	Frozen														
						Frontal Lobe													v	٧	v	
						2 DIRG6-	В	FFPE												_		
						Cerebellum	E	FFPE	WT										v	٧	v	
						DIPG6-		FEDE											v v	٧	v	
						Indidmus	п	FFPE														
						DIPG6-						H3.3 K27M	ATRX splicing (11.21%), PIK3CA H1047R (0.45%), TP53 G11D (11%).			H3.3 K27M	H3.3 K27M	TP53 G113D:				
						Midbrain	1	Frozen				(6.19%)	OLIG2 P215fs (4.44%)			(3%)		OLIG2 P215fs				
						DIPG6-Pons				H3 3 K27M		H3 3 K27M	ATRX splicing (88.65%), PIK3CA			H3 3 K27M		TP53 G113D				cerebral
DIPG6 (H3.3)	DIPG (Astrocytom	Male	6v	Temozolomi	Yes	1		Frozen		(46%)		(57.17%)	H1047R (0.74%), TP53 G11D (85 40%) OLIG2 P215fs (34 46%)			(39%)	H3.3 K27M	OLIG2 P215fs				cortex &
511 66 (11515)	a)	maic	.,	de		DIPG6-Pons	,	Hozen				H3 3 K27M	ATRX splicing (84.57%), PIK3CA					TP53 G113D-				cerebellum is FEPF
						2		Frozen				(50.43%)	H1047R (5.71%), TP53 G11D (86.03%), OUG2 P215fc (46.3%)				H3.3 K27M	OLIG2 P215fs				131112
							,	Hozen					(00.0570), 00.02121513 (40.570)					TRE2 C112D.				
						DIPG6-Pons						H3.3 K27M	ATRX splicing (92.7%), PIK3CA			H3.3 K27M		ATRX splicing;				
						3						(46.4%)	(92.61%), OLIG2 P215fs (50.13%)			(31%)	H3.3 K2/M	PIK3CA H1047R;				
							J	Frozen										OLIG2 P215ts				1
						DIPG6-Pons						H3.3 K27M	ATRX splicing (85.96%), PIK3CA H1047R (2.52%), TP53 G11D			H3.3 K27M	H3.3 K27M	ATRX splicing; TP53 G113D:				
						4	J	Frozen				(42.61%)	(86.24%), OLIG2 P215fs (44%)			(22%)		OLIG2 P215fs				
						DIPG6-Pons						H3.3 K27M	ATRX splicing (49.57%), PIK3CA H1047R (3.06%), TP53 G11D			H3.3 K27M	H3.3 K27M	TP53 G113D;		1		
						5	J	Frozen				(9.2%)	(51.19%), OLIG2 P215fs (23.5%)			(23%)		OLIG2 P215fs		1		1
						DIPG6-Pons		FEPF	WT										v v	v	v	
						DIPG7-				1		1		Does not								1
						Temporal		FEDE		WT		\A/T		cluster with		WT	failed	failed	v	٧	V	
						DIPG7-	A	TPE		1		VV 1		Does not		1	1			1		1
						Temporal		FEDE		WT				cluster with					v	٧	V	
						DIPG7-	A	FFPE				1		KZ/IVI group		1	1			1	1	1
						Frontal Lobe				WT		1							v	٧	V	
		1				1 1	, D	LEDE		÷						÷		÷				÷

	I I	1		1	1	DIPG7-												1	1			
						Frontal Lobe			H3.3 K27M				Clusters with					٧	٧	٧	v	
						2	B FFPE		(26%)				K27IVI group									
						DIPG7-								1 core								
						Parietal Lobe	6		WT		/T			punch	WT	WT	no mutations					
						DIPG7-	C Frozen			v	/1		Does not									
						Parietal Lobe		WT					cluster with					v		v	v	
						2	C FFPE						K27M group									
						DIPG7-							Does not									
						Parietal Lobe		WT					cluster with					v		v	v	
						3	C FFPE						K2/M group									
						Occipital			WT									v		v	v	
						Lobe 1	D FFPE											-		-		
						DIPG7-																
						Occipital			WT									v		v	v	
						Lobe 2	D FFPE															
						DIPG7-				H3 3	K27M	TP53 R43H (20.12%), PBRM1 splicing			H3.3 K27M	H3 3 K27M	TD53 P/3H					
						1	E Frozen			(28,	.5%)	(0.35%)			(26%)	115.5 K271VI	11 55 14511					
						DIPG7-																
						Cerebellum									WT	WT	no mutations					cerebral
						2	E Frozen	-														cortex &
DIPG7 (H3.3)	DIPG (GBM)	remale	10y 8m	SAHA	Yes	DIPG7-			\A/T				Does not					v	v	v	v	cerebellum
						3	E FEPF		VV I				K27M group					1	ľ	· ·	· ·	is FFPE
						DIPG7-			1				Does not				1	1	1			
						Cerebellum							cluster with					٧	v	V	v	
						4	E FFPE			W	/T		K27M group	L	L	L	l	I	I			
						DIPG7-	r		H3.3 K27M				Clusters with					v	v	v	v	
						Ventricle 1	F FFPE		(64%)				K2/IVI group									
						Ventricle 2	F FFPE		(48%)				K27M group					٧	v	V	v	
						DIPG7-		112 2 12714					Chusters with									
						Hippocampu		(59%)					K27M group					٧	٧	٧	v	
						s 1	G FFPE	(007.1)														
						DIPG7- Hippocampu			WT									v		v	v	
						s 2	G FFPE															
						DIPG7-			NA/T									1		1	N	
						Thalamus 1	H FFPE		001											•	•	
						DIPG7-			H3.3 K27M				Clusters with					٧	٧	٧	v	
						DIRG7 Bons	H FFPE	-	(52%)	12.2	2714	TRE2 R42H (67 EE%) DRRM1 colicing	K2/IVI group		U2 2 2 27M		-					
						1	J Frozen		(26%)	(66.	75%)	(0.23%)			(64%)	H3.3 K27M	TP53 R43H					
						DIPG7-Pons				H3.3	K27M	TP53 R43H (6.88%), PBRM1 splicing			H3.3 K27M	112 2 1/2764	T052 0420					
						2	J Frozen			(9.7	4%)	(0.22%)			(10%)	H3.3 K2/IVI	1P55 K45H					
						DIPG7-Pons				H3.3	K27M	TP53 R43H (87.04%), PBRM1 splicing		2 Core	H3.3 K27M	H3.3 K27M	TP53 R43H					
						3 DIRG7 Bons	J Frozen			(56.)	87%)	(0.51%)	Clustors with	Punches	(58%)							
						4	J FEPF		N/A				K27M group					v	v	v	v	
						DIPG7-Pons								2 Core	MIT	WT						
						5	J Frozen			W	/T			Punches	VVI	VVI	no mutations					
						DIPG7-Pons												v	v	v	v	
						b DIRG7-	J FFPE		1	H33	K27M	TD53 PA3H (6 57%) DBPM1 colicing		1	H3 3 K27M		1	1	1			
						Medulla	K Frozen			(20.8	87%)	(0.36%)			(21%)	H3.3 K27M	TP53 R43H					
				1	1	DIPG8-			1													
						Temporal		WT										1	1			
						Lobe 1	A FFPE															
						Temporal		WT														
						Lobe 2	A FFPE	***										1	1			
						DIPG8-				10.01	K37NA	TP53 E162X (11 6%) HOVD2 H4240			H3 3 V37M							
						Frontal Lobe			WT	(5.1	.1%)	(4.48%), PTPN11 A72V (0.09%)			(9%)	H3.3 K27M	TP53 E162X					
						1	B Frozen			(5.1					1.004							
						Frontal Lobe		WT										v	v	v	v	
						2	B FFPE											L	L			
						DIPG8-			1							-						
						Frontal Lobe		WT										V	v	V	V	
						3 DIRCR	B FFPE															
						Parietal Lobe		WT										1	1			
						1	C FFPE															
						DIPG8-																
						Parietal Lobe	_				-				WT	WT	no mutations	1	1			
						2 DIRG®	C Frozen	-	1	W	/1						l					
						Occipital									H3.3 K27M	WT	TP53 (3.13%)					
						Lobe	D Frozen			w	/т				(21%)			1	1			

						DIPG8- Cerebellum	F	Frozen			H3.3 K27M	TP53 E162X (22.17%), HOXD3 H431Q (4.27%), PTPN11 A72V (0.08%)		H3.3 K27M (24%)	H3.3 K27M	TP53 E162X				
						DIPG8- Cerebellum		Hoten			(17.5070)			WT	WT	TP53 (2.03%)				
						2	E	Frozen			WT									
						Cerebellum 3	E	FFPE	H3.3 K27M (6%)								٧	٧	٧	٧
				Temozolomi		DIPG8- Cerebellum 4	F	FEPF	H3.3 K27M (8%)								٧	٧	٧	v
PG8 (H3.3)	DIPG (GBM)	Male	5у	de, Avastin, SAHA	Yes	DIPG8- Ventricle	F	Frozen			WT			WT	WT	no mutations				
						DIPG8- Hippocampu s 1	G	FFPE	WT		WT			WT	failed	failed				
						DIPG8- Hippocampu	c	FEDE	WT											
						DIPG8-	9	TTTL	WT								v	V	v	v
						Thalamus 1	Н	FFPE	H3 3 K27M								<u> </u>			
						Thalamus 2	н	FFPE	(4%)								V	V	V	V
						DIPG8- Midbrain	I	Frozen			H3.3 K27M (41.66%)	TP53 E162X (77.78%), HOXD3 H431Q (46.62%), PTPN11 A72V (0.09%)		H3.3 K27M (16%)	H3.3 K27M	TP53 E162X				
						DIPG8-Pons 1	J	Frozen			H3.3 K27M (62.5%)	TP53 E162X (91.58%), HOXD3 H431Q (49.78%), PTPN11 A72V (0.01%)		H3.3 K27M (71%)	H3.3 K27M	TP53 E162X		$\lfloor floor$		
						DIPG8-Pons 2	I	Frozen			H3.3 K27M (44.42%)	TP53 E162X (69.52%), HOXD3 H431Q (25.18%), PTPN11 A72V (0.14%)		H3.3 K27M (21%)	H3.3 K27M	TP53 E162X				
						DIPG8-Pons	,		H3.3 K27M		(1			v	v	v	V
						3 DIPG8-Pons	J	FFPE	(12%) H3.3 K27M											
						4	J	FFPE	(17%)								v	v	v	v
						DIPG8-Pons 5	J	FFPE	(13%)								v	٧	v	V
						DIPG8- Medulla 1	к	Frozen	H3.3 (48	K27M 3%)	H3.3 K27M (47.33%)	TP53 E162X (58.07%), HOXD3 H431Q (28.14%), PTPN11 A72V (0.33%)		H3.3 K27M (48%)	H3.3 K27M	TP53 E162X				
						DIPG8- Medulla 2	к	Frozen			H3.3 K27M (30.03%)	TP53 E162X (10.27%), HOXD3 H431Q (7.25%), PTPN11 A72V (17.68%)		H3.3 K27M (34%)	H3.3 K27M	TP53 E162X				
						DIPG8- Medulla 3	ĸ	Frozen			H3.3 K27M	TP53 E162X (85.62%), HOXD3 H431Q (39.88%), PTPN11 A72V (0.15%)		H3.3 K27M (57%)	H3.3 K27M	TP53 E162X				
						DIPG9-					(0011011)									
						Temporal Lobe 1	A	FFPE	WT											
						DIPG9-			WT				Does not							
						Lobe 2	A	FFPE	WI				K27M group							
						DIPG9- Temporal								WT	WT	no mutations				ļ
						Lobe 3	A	Frozen									\vdash	⊢		
						DIPG9- Frontal Lobe			WT								v	٧	٧	v
						1 DIPG9-	В	FFPE					Does not				$\left - \right $	-		
						Frontal Lobe			WT				cluster with							ļ
						2 DIPG9-	В	FFPE					K2/M group				\vdash	-	+	
						Frontal Lobe	р	Frozon	W	л	WT			WT	WT	no mutations				ļ
						DIPG9-	D	110201					Does not	1						H
						Parietal Lobe 1	с	FFPE	WT				cluster with K27M group							ļ
						DIPG9-			WT				Does not							
							с	FFPE	VV I				K27M group				\parallel	\vdash		
						Parietal Lobe	с	Frozen			WT			WT	WT	no mutations				
						DIPG9- Occipital			WT				Does not cluster with							
						Lobe 1	D	FFPE			-		K27M group Does not				\vdash		\rightarrow	
				ABT888		Occipital			WT				cluster with							
	I			(Veliparh)		Lobe 2	D	FFPE					K27M group			I				

	1		1	(venparo)	1	DIPG9-															
IDC0 (H3 3)	DIRG (GRM)	Malo	9v 3m	Temozolomi	Voc	Occipital										W/T	WT	no mutations			
1 05 (115.5)	Dir G (GDivi)	wate	Sy Sin	de in	163	Lobe 3	D	Frozen			w	NΤ				***		no matations			
				maintenanc		DIRG9-	0	Hozen						Does not							
				e phase		Caraballum	F			WT.				cluster with					v ,	/ v	v
						1	-	FEDE						K27M group					•		
						DIDCO		1116						Dees not							
						Coroballum	F			W/T				clustor with					v ,	/ v	v
						cerebellulli	-	FEDE		VVI				K27M group							
						DIRCO		TTTL						K27IVI group							
						Coroballum									1 Core	failed	NA/T	no mutations			
						2	F	Frozen			14	ΛT			Punch	Talleu	vv 1	no mutations			
]	DIPG9-	L	110201			H3 3	K27M	ATRY V1514D (37 84%) RPM1D			H3 3 K27M		PPM1D E525Y		_	
					1	Ventricle	E	Frozen			(36)	/0%)	E525Y (24 68%)	1	1	(32%)	H3.3 K27M	ATRY V1514D			1
]	DIPG9-	Г	nozen			(30.4		L323A (24.08%)	Does not		(32/8)		ATTA V1314D			
						Hippocampu			WT					cluster with							
						e 1	6	FEDE						K27M group							
						DIPG9-	0							Does not							
						Hinnocamnu			WT					cluster with							
						s 2	G	FEPE						K27M group							
						32	u u							Does not							
						DIPG9-			H3.3 K27M					cluster with					v	/ v	v
						Thalamus 1	н	FEPE	(11.5%)					K27M group							
														Does not							
						DIPG9-			WT					cluster with							
						Thalamus 2	н	FFPE						K27M group							
						DIPG9-					H3.3	K27M	ATRX V1514D (62,76%), PPM1D		1 Core	H3.3 K27M		PPM1D E525X:			
						Midbrain	1	Frozen			(48.5	.57%)	E525X (48.87%)		Punch	(49%)	H3.3 K27M	ATRX V1514D			
					1	DIPG9-Pons				H3.3 K27M	H3.3	K27M	ATRX V1514D (39.03%), PPM1D			H3.3 K27M		PPM1D E525X;			
]	1	J	Frozen		(26%)	(31.4	.42%)	E525X (22.06%)		1	(24%)	H3.3 K27M	ATRX V1514D			
					1	DIPG9-Pons															
					1	2	J	FFPE						1	1	1	1		v		v
]	DIPG9-					H3.3	K27M	ATRX V1514D (64.19%), PPM1D			H3.3 K27M		00140 5535V			
]	Medulla 1	к	Frozen			(46.	i.6%)	E525X (30.9%)		1	(4%)	H3.3 K27M	PPM1D E525X			
]	DIPG9-			H3.3 K27M				· · · ·	Clusters with							
					1	Medulla 2	к	FFPE	(59%)					K27M group	1	1	1		v	v	v

Supplementary Table 1: Clinical and molecular data from 134 punch cores taken from autopsy brains of 9 Diffuse Intrinsic Pontine Glioma (DIPG) patients analyzed in this study. Neuroanatomical locations: A = temporal lobe, B = frontal lobe, C = parietal lobe, D = occipital lobe, E = cerebellum, F = lateral ventricles, G = hippocampus, H = thalamus, I = midbrain, J = pons, K = medulla

		М	OLECULAR ANALY	/SES #	IHC only #	IHC and	molecular
Patient ID	Total # of samples analyzed (IHC and molecular)	Total #	Brainstem #	Non brainstem #		Tumor #	Normal #
DIPG1	16	8	6	2	8	13	3
DIPG2	28	26	5	21	2	9	19
DIPG3	4	4	2	2	0	2	2
DIPG4	13	6	5	1	7	8	5
DIPG5	9	6	4	2	3	6	3
DIPG6	11	9	7	2	2	8	3
DIPG7	26	25	6	19	1	12	14
DIPG8	26	26	9	17	0	16	10
DIPG9	25	24	4	20	1	7	18
TOTAL	158*	134**	48	86	24***	81	77
AVERAGE	18	15	5	10	3	9	9

Supplementary Table 2: Sample distribution from 9 DIPG patient samples used in this study

Supplementary Table 2: Sample distribution and neuroanatomical locations from 9 DIPG patients (DIPG1-DIPG9) for all methods used in this study. *Number includes all samples used in this study. **Number excludes samples with only IHC data. ***Number of samples with only IHC data.

Patient ID	Pons	Medulla	Midbrain	Cerebellum	Thalamus	Lateral Ventricles	Hippo- campus	Frontal Lobe	Occipital Lobe	Other Cerebral location
DIPG1	(4/4)	(1/1)	(1/1)	(1/1)				(0/1)		
DIPG2	(4/4)	(1/1)		(1/6)	(1/1)			(0/3)	(0/2)	
DIPG3	(2/2)			(0/1)					(0/1)	(0/1)
DIPG4	(5/5)							(0/1)		
DIPG5	(1/1)	(1/1)	(1/2)	(0/2)						
DIPG6	(5/6)		(1/1)	(0/1)				(0/1)		
DIPG7	(3/4)	(1/1)		(1/4)	(1/2)	(2/2)	(1/2)	(1/2)		
DIPG8	(5/5)	(3/3)	(1/1)	(3/4)	(1/2)	(0/1)	(0/2)	(1/3)	(1/1)	
DIPG9	(1/1)	(2/2)	(1/1)	(0/3)	(1/2)	(1/1)	(0/2)	(0/3)	(0/3)	
# patients with tumor extension	9	6	5	4	4	2	1	2	1	
Total # patients analyzed	9	6	5	8	4	3	3	7	4	
Percentage	100%	100%	100%	50%	100%	67%	33%	29%	25%	
# samples with tumor extension	31	9	5	6	4	3	1	2	1	
Total # samples analyzed	33	9	6	22	6	4	5	13	6	
Percentage	94%	100%	83%	27%	67%	75%	20%	15%	17%	

Supplementary Table 3: Tumor extension assessed by molecular analysis

Supplementary Table 3: Tumor extension in different neuroanatomical locations tested by different molecular analyses (WES, MiSeq, ddPCR) for 9 Diffuse Intrinsic Pontine Glioma brain samples (DIPG1-DIPG9) analyzed in this study. Numbers in parentheses:(number of samples with H3-K27M/number of samples analyzed by molecular methods). **Cells in bold indicate samples with extension detected by molecular analysis.**

	K27M Marker	Accom	panying (potentia	l) driver mutat	tions
DIPG1	HIST1H3B_p.K27M	PIK3R1_splicing	CTNNA2_p.A260S		
DIPG2	HIST1H3B_p.K27M	ACVR1_p.G328V	PIK3CA_p.H1047R	MAX_p.R51Q	PTEN_p.A126S
DIPG3	HIST2H3C_p.K27M	ACVR1_p.G328V	PIK3CA_p.H1047R		
DIPG4	H3F3A_p.K27M	ACVR1_p.R206H	TP53p.C3F		
DIPG5	H3F3A_p.K27M	TP53p.A175fs	PPM1D_p.W427X	ATRXp.D94fs	
DIPG6	H3F3A_p.K27M	TP53_p.G113D	PIK3CA_p.H1047R	ATRXsplicing	OLIG2p.P215fs
DIPG7	H3F3A_p.K27M	TP53_p.R43H			
DIPG8	H3F3A_p.K27M	TP53_p.E162X	TP53p.P58fs		
DIPG9	H3F3A_p.K27M	PPM1D_p.E525X	ATRX_p.V1514D		

Supplementary Table 4: Whole Exome Sequencing data for 67 samples (9 Patients; DIPG1-DIPG9)

Supplementary Table 4: Summary of Whole Exome Sequencing data for 67 samples from 9 Diffuse Intrinsic Pontine Gliomas patients (DIPG1-DIPG9) demonstrating the main driver mutations as well as the accessory mutations.

Supplementary Table 5 Whole Exome Sequencing-based CNV calling

Supplementary Table 5: Copy Number Variation (CNV) calling based on Whole Exome Sequencing data for 67 samples from 9 Diffuse Intrinsic Pontine Glioma patients (DIPG1-DIPG9).

Supplementary Table 6: Integrated dataset of DIPG samples from four published studies (n=121) and present work (n=9)

Sample	Tumor Grad	e Age	Gender	H3 mutation	ACVR1	TP53	PPM1D	PIK3CA	PIK3R1	PTEN	EGFR	FGFR1	PDGFRA	Other mutations	References
SIHGG106 A	IV	3 72	F	H3 1 K27M	R258G			H10478							Wulet al. 2014
SIHGG074 D	IV.	4.63	F	H3 1 K27M	R258G			1102 V105del							Wu et al. 2014
	IV IV	4.03 E 16	- -	113.1 K27W	R2580			1102_0105061	1280dal						Wu et al. 2014
	IV	5.10	r	H5.1 K27IVI	R2360				LSOULEI						Wu et al. 2014
SJHGG118_A	IV	3.40	IVI	H3.1 K2/M	G328V				K567_I571>I						Wu et al. 2014
SJHGGUU8_A	IV .	3.66	F	H3.1 K27M	G356D	R2/3C									wu et al. 2014
SJHGG070_A	N/A	4.42	F	H3.1 K27M	G328E	G245C									Wu et al. 2014
SJHGG069_A		8.40	F	H3.1 K27M	G328E								Amp (Microarray CNV)		Wu et al. 2014
SJHGG047_A	IV	4.27	м	H3.1 K27M	G328E										Wu et al. 2014
SJHGG065_A	IV	6.58	м	H3.1 K27M	R206H										Wu et al. 2014
SJHGG077_A	IV	4.20	F	H3.1 K27M	R206H										Wu et al. 2014
SJHGG079_A	N/A	5.68	м	H3.1 K27M	R258G										Wu et al. 2014
SJHGG117_A	IV	2.58	F	H3.1 K27M	G328E			H1047R			R108K				Wu et al. 2014
SJHGG061 A	IV	6.90	F	H3.3 K27M	G328V			P449 L456>L					Amp (Microarray CNV)	ATRX gC335>FR	Wu et al. 2014
SIHGG058 A	IV	5.20	F	H3.3 K27M	G356D	F180fs		-							Wu et al. 2014
SIHGG002 A	IV	14.95	F	H3 3 K27M		B213X		E545K							Wulet al. 2014
	IV.	6 12	M	H3 3 K27M		R156 R158>R (LOH)		E5/15K					Amp (Microarray CNV)		Wu et al. 2014
	IV.	12 20	ГФ.	H2 2 K27M		1150_1150>11(LOII)	W/427Y	E110dol					And (wherearray cive)		Wu ot al. 2014
	IV IV	5 70	1 C	113.3 K27IVI			MAGE DAGTE	LIIOUEI	KEZE DEZZdol						Wu et al. 2014
	IV IV	3.70	r c	H3.3 K27IVI		-52244 (LOUI)	1400_P40715		K575_K577uei						Wu et al. 2014
SJHGG006_A	IV	5.00	r F	H3.5 K27IVI		gezzak (LOH)									Wu et al. 2014
SJHGG102_D	IV	4.75	F	H3.3 K27M		R273C, Q144X									Wu et al. 2014
SJHGG105_A	IV	3.35	F	H3.3 K27IVI		E339X, R248W									wu et al. 2014
SJHGG051_A	IV	15.70	м	H3.3 K27M		S241F							Amp (Microarray CNV)	NF11719fs (LOH)	Wu et al. 2014
SJHGG010325_A1	IV	10.23	м	H3.3 K27M		R273H							Amp (Microarray CNV)		Wu et al. 2014
SJHGG062_A	IV	12.50	F	H3.3 K27M		S241Y							N659K		Wu et al. 2014
SJHGG001_A	IV	5.33	F	H3.3 K27M		R273C (LOH)			L				A529>15aa		Wu et al. 2014
SJHGG045_A	N/A	11.78	М	H3.3 K27M		M237I (LOH)									Wu et al. 2014
SJHGG060_A	IV	13.27	М	H3.3 K27M		R248Q (LOH)									Wu et al. 2014
SJHGG073_A	N/A	11.10	M	H3.3 K27M		R273C, K120M									Wu et al. 2014
SJHGG007_A	IV	10.90	М	H3.3 K27M		\$241F								NF1 R816X, SV (NF1_CNTN5)	Wu et al. 2014
SJHGG053 A	IV	7.31	F	H3.3 K27M		V173A									Wu et al. 2014
SJHGG055 A	IV	6.43	F	H3.3 K27M		H193Y									Wu et al. 2014
SJHGG101 A	IV	17.24	F	H3.3 K27M		C176Y									Wu et al. 2014
SJHGG004 D	IV	5.47	м	H3.3 K27M		L130 N131>L									Wu et al. 2014
SIHGG010324 A1	N/A	9.56	м	H3.3 K27M		R174_F180>R									Wu et al. 2014
	IV.	6.01	м	H3 3 K27M		B303X									Wu et al. 2014
	IV.	9.00	F	H3 3 K27M		R234C							Amp (Microarray CNV)		Wu et al. 2014
	IV.	13 77	F	H3 3 K27M		12010							(incloandy citty)	CCND2 (Amp)	Wu et al. 2014
	IV.	2.06	- -	H2 2 K27M		GEEV								centre (Amp)	Wu ot al. 2014
	IV IV	5.50	- -	113.3 K27W		6667									Wu et al. 2014
	IV N	5.00	r r	113.3 K27IVI											Wu et al. 2014
SJHGG109_A	IV	8.64	F	H3.3 KZ/IVI		24626									Wu et al. 2014
SJHGG068_A	IV	2.97	M	H3.3 K2/M		¥163C									Wu et al. 2014
SJHGG059_A	IV	8.90	м	WI	G328V			E545K	1576_R577>R						Wu et al. 2014
SJHGG064_A	IV	10.20	м	WI	G328W		Q404X	H1047R							Wu et al. 2014
SJHGG071_A	N/A	6.87	F	H3.3 K27M	G328E		S516X	E545K						ATRX T1610R	Wu et al. 2014
SJHGG005_A	IV	5.35	F	WT	G328V										Wu et al. 2014
SJHGG003_A	IV	15.58	м	WT		P47_F54fs (LOH)							Amp (Microarray CNV), SV (I	DIP2C_PDGFRA)	Wu et al. 2014
SJHGG052_A	IV	5.94	F	WT		R158G (LOH)									Wu et al. 2014
SJHGG063_A	IV	5.40	F	WT											Wu et al. 2014
SJHGG076_A	IV	10.25	F	H3.3 K27M			E405X								Wu et al. 2014
SJHGG078_A	IV	6.46	м	WT											Wu et al. 2014
SJHGG075_A	IV	1.82	М	WT		A88fs							Amp (Microarray CNV)		Wu et al. 2014
mHGA1	IV	10	M	H3.3 K27M										CHEK2 splicing	Fontebasso et al. 2014
mHGA2	IV	3.5	F	H3.3 K27M	R206H			E545K							Fontebasso et al. 2014
mHGA3	IV	5	м	H3.3 K27M	l	R273H									Fontebasso et al. 2014
mHGA4	IV	3	F	H3.3 K27M	1	IHC POSITIVE									Fontebasso et al. 2014
mHGA14	IV	10	F	H3.3 K27M	1	R282W							Amp (450K CNV), 1543 V544	NF1 LOSS (450K CNV)	Fontebasso et al. 2014
mHGA15	IV	8	F	H3 3 K27M		R273P									Fontebasso et al. 2014
mHGA16	IV.	12	M	H3 3 K27M		R2//8W									Fontebasso et al. 2014
mHGA17	IV.	6	C	13.3 KZ/IVI	1	D156Dfc*17)			1				NI2295	SETD2 H1025D	Fontobasso et al. 2014
	IV N	0	r r	113.3 K27IVI		R150PIS 17)		1/2440		LOSS (AFOK CNIV)			N3283	3ETD2 H1033D	Fontebasso et al. 2014
mHGA18	IV IV	7	F	H3.3 KZ/IVI		R248W	0	V344G		LUSS (450K CINV)			Amp (450K CNV)		Fontebasso et al. 2014
mHCA20	11	1/2	191	113.3 NZ/IVI		1450K CNV	1								Fontohasso et al. 2014
mHGA20	IV	/	171	H3.3 KZ/IVI		V1/3L									Fontebasso et al. 2014
mHGA21	IV	4.5	F	H3.3 K27M		R1/5H									Fontebasso et al. 2014
mHGA22	IV	4	M	H3.3 K27M		5241P									Fontebasso et al. 2014
mHGA23	IV	7	IF .	H3.3 K27M		V157F								ATRX Q1034fs	Fontebasso et al. 2014
mHGA24	IV	13	F	H3.3 K27M		P152Rfs*27			K447_Y452del					ATRX C1122Vfs*8)	Fontebasso et al. 2014
mHGA26	Ш	14	F	H3.3 K27M								N546K, 655_65	5del	ATRX L2240R	Fontebasso et al. 2014
mHGA30	IV	6	М	H3.1 K27M		E258G									Fontebasso et al. 2014
mHGA31	IV	4	М	H3.1 K27M	R258G				L449_H450delinsY						Fontebasso et al. 2014
mHGA32	IV	3	М	H3.1 K27M	G328E			C420R							Fontebasso et al. 2014
mHGA33	111	3	F	H3.1 K27M	G328V		C478X	Y1038F, H1047R							Fontebasso et al. 2014
mHGA34	IV	9	F	H3.1C K27M	G356D										Fontebasso et al. 2014
mHGA35	IV	17	М	WT		V173L, LOSS (450K CNV)							Amp(450K CNV)		Fontebasso et al. 2014

r	1		1		1		1		I	1				1
mHGA38	IV	6	M	H3.3 K27M		R158G							<u> </u>	Fontebasso et al. 2014
mHGA39	IV	7	F	H3.3 K27M		\$241F							L	Fontebasso et al. 2014
mHGA40	IV	8	M	H3.3 K27M		Y220C							L	Fontebasso et al. 2014
HSJD_DIPG002		6	F	H3.1 K27M	R258G			H1047R						Taylor et al. 2014
NCHP_DIPG011		4.8	F	H3.1 K27M	G328E				573-576 del				IGF2R K162R	Taylor et al. 2014
NCHP_DIPG108		7.5	M	H3.1 K27M	G328V					R130X				Taylor et al. 2014
HSJD_DIPG004		10	F	H3.1 K27M	G328E									Taylor et al. 2014
NCHP_DIPG052		4.6	M	H3.1 K27M	G328V									Taylor et al. 2014
NCHP_DIPG113		4.6	м	H3.1 K27M	G356D									Taylor et al. 2014
NCHP_DIPG114		8.6	м	H3.1 K27M				Q546K						Taylor et al. 2014
NCHP_DIPG103		5.8	F	H3.1 K27M		E221X								Taylor et al. 2014
NCHP_DIPG081		6.7	м	H3.3 K27M		R273H								Taylor et al. 2014
NCHP_DIPG105		6.6	F	H3.3 K27M		R175H								Taylor et al. 2014
NCHP_DIPG061		11.9	F	H3.3 K27M		V157F								Taylor et al. 2014
NCHP_DIPG102		10.3	M	H3.3 K27M		C135Y								Taylor et al. 2014
HSJD_DIPG001		6	F	H3.3 K27M		G2445								Taylor et al. 2014
NCHP DIPG112		5.6	F	H3.3 K27M		R273C								Taylor et al. 2014
NCHP DIPG111		10.6	F	H3.3 K27M		156fs								Taylor et al. 2014
NCHP DIPG109		6.2	м	H3.3 K27M		R273C								Taylor et al. 2014
NCHP DIPG065		10.2	м	H3.3 K27M		A159V			K567E				1	Taylor et al. 2014
NCHP DIPG006		6.3	м	H3.3 K27M			L513X	E542K						Taylor et al. 2014
HSID DIPG003		6	м	H3.3 K27M			\$468X	H1047R					1	Taylor et al. 2014
HSID_DIPG008		6.5	M	H3.3 K27M			429fs							Taylor et al. 2014
NCHP_DIPG107		8.8	M	H3 3 K27M					K379F				ATM 1190-1191fs	Taylor et al. 2014
NCHP_DIPG101		3.9	F	H3 3 K27M					10752				711111150 115115	Taylor et al. 2014
		9.9	M	H3 3 K27M	R206H		/128fc	C420B						Taylor et al. 2014
HSID_DIPG106		12.1	M	W/T	1120011		42013 483fc	H1047R					IGE28 D18308	Taylor et al. 2014
HSID_DIPG104		12.1	141	WT		P292W/	40515	1104/1					NE1 B102V	Taylor et al. 2014
		5.7	F	WT		120200							111111132	Taylor et al. 2014
DIPG03	GBM	ΝΔ	M	H3 1C K27M		1							+	Buczkowicz et al. 2014
DIRGES	0.0111	NA	141	H2 1 K27M	C229E	P12U							+	Buczkowicz ot al. 2014
DIPG26	IGA	NA		H2 2 K27M	03281	\$220D		E545C						Buczkowicz et al. 2014 Buczkowicz et al. 2014
DIPG20	CRM	NA NA	1	113.3 K27W		5355F		1.5450					<u>+</u>	Buczkowicz et al. 2014
DIPGU7	CRM	NA		H2 2 K27M		R43H								Buczkowicz et al. 2014
DIPG08	GBM	INA NA	r r	H3.3 K27W		R2015							<u> </u>	Buczkowicz et al. 2014
DIPG24	GBIVI	NA NA	F	H3.3 K27IVI		R141C								Buczkowicz et al. 2014
DIPG27	GBIVI	NA NA	171	H3.3 K2/IVI		1								Buczkowicz et al. 2014
DIPG57	GBIVI	NA NA	F	H3.3 K27IVI		1							+	Buczkowicz et al. 2014
DIPG60	GBIVI	NA	IVI	H3.3 K27IVI		1								Buczkowicz et al. 2014
DIPG06	GBIM	NA		H3.3 K2/M		S109P								Buczkowicz et al. 2014
DIPG19	GBIM	NA	F	H3.3 K2/M		V41L								Buczkowicz et al. 2014
DIPG28	AA	NA	M	H3.3 K27M		1						1281P		Buczkowicz et al. 2014
DIPG30	GBM	NA	м	H3.3 K27M	1									Buczkowicz et al. 2014
DIPG04	GBM	NA	M	H3.3 K27M		V25F								Buczkowicz et al. 2014
DIPG61	GBM	NA	м	H3.3 K27M		1							<u> </u>	Buczkowicz et al. 2014
DIPG58	GBM	NA	F	H3.3 K27M					Q325X, N344del				<u> </u>	Buczkowicz et al. 2014
DIPG25	AA	NA	F	H3.3 K27M									L	Buczkowicz et al. 2014
DIPG29	GBM	NA	F	WT										Buczkowicz et al. 2014
DIPG18	GBM	NA	M	WT		1								Buczkowicz et al. 2014
DIPG1	GBM	21.2	M	H3.1 K27M					Splicing				CTNNA2 A260S	Present study
DIPG2	GBM	6.10	M	H3.1 K27M	G328V			H1047R		A126S			MAX R51Q	Present study
DIPG3	GBM	7.5	F	H3.2C K27M	G328V			H1047R						Present study
DIPG4	GBM	5.6	F	H3.3 K27M	R206H	C3F								Present study
DIPG5	GBM	8	М	H3.3 K27M		A175fs	W427X						ATRX D94fs	Present study
DIPG6	Astrocytom	na 6	М	H3.3 K27M		G113D		H1047R					ATRX splicing, OLIG2 P215fs	Present study
DIPG7	GBM	10.8	F	H3.3 K27M		R43H								Present study
DIPG8	GBM	5	М	H3.3 K27M		P58fs, E162X								Present study
DIPG9	GBM	9.3	М	H3.3 K27M			E525X						ATRX V1514D	Present study

Supplementary Table 6: Integrated dataset of Diffuse Intrinsic Pontine Glioma samples from four published studies (n=121) and present work (n=9) showing ditribution of histone mutations.

Sample Name	Туре	H3 Mutation	Other Accompa	anying Mutations
	Autopsy	H3.3 K27M	TP53_p.R273C (LOH)	PDGFRA_p.A529>15aa
300001	Biopsy	H3.3 K27M	TP53_p.R273C (LOH)	PDGFRA_p.A529>15aa
SJHGG002	Autopsy	H3.3 K27M	TP53_p.R213*	PIK3CA_p.E545K
3100002	Biopsy	H3.3 K27M	TP53_p.R213*	TP53_p.L252P
mHGA18	Autopsy	H3.3 K27M	TP53_p.R248W	PIK3CA_p.V344G
	Biopsy	H3.3 K27M	TP53_p.R2 <mark>48W</mark>	PIK3CA_p.V344G

Supplementary Table 7: Mutation analysis of biopsy (obtained at diagnosis) and autopsy pairs from the same patients

Supplementary Table 7: Mutation status of the main histone drivers and accompanying genes obtained from analysis of samples acquired at biopsy and autopsy from three Diffuse Intrinsic Pontine Glioma (DIPG) patients.

1 Discussion

Genomic analysis of autopsy DIPG brains provides a fascinating opportunity to reconstruct the evolution of this deadly tumor, and has important implications on potential therapeutic interventions. Despite the sample number limitation based on disease incidence, this study provides insight into the spatial and temporal evolution of the tumor genome in DIPG helping derive a general model for this disease.

7

8 Our analysis suggests that H3K27M mutations are the initial oncogenic event in DIPGs. 9 However, these mutations are not solely sufficient for tumor formation, as they require, nearly 10 universally, obligate partners for effective tumorigenesis. There is some disagreement in the 11 cancer field as to the definition of "driver" versus "passenger" mutations. The designation 12 passenger has been used for any variant that is not absolutely essential to the tumorigenesis. However, for the purpose of this study – and more generally – we postulate three categories of 13 14 mutations: 1) Main driver mutations are essential to initiate and continue tumorigenesis; 2) 15 Accessory driver mutations can further promote and accelerate tumor growth but are not 16 absolutely essential; 3) Passenger mutations are neutral and do not affect the tumor. H3K27M 17 and their obligate partners appear thus to be the main driver mutations, since they always co-18 occur together throughout each tumor.

These K27MH3.3 partner mutations are mostly genetic alterations affecting the TP53 pathway, mainly *TP53* and less frequently *PPM1D* genes. H3K27M mutants also favor association with *ACVR1* gain of function mutations and in rare cases (1 in our dataset and 2 in other reported cases) *PIK3R1* mutations. Interestingly, even if more frequent, PIK3CA mutations, including PIK3CAH1047R, clearly fall into the accessory driver category, since they were invariably sub-

1 clonal in our dataset and in some other reported cases. Similarly, a PTEN mutation was also 2 found in some but not all tumor areas in DIPG2 (Fig. 3). We can only speculate at this time as to 3 why mutations that ultimately activate the PI3K/AKT pathway appear clonal for some of the 4 component genes and subclonal for others. This may be related to the dosage effect of pathway 5 activation, as the loss of the regulatory unit (*PIK3R1*) leads to increased baseline activity of the 6 wild-type kinase whereas the PIK3CAH1047R mutation has been associated with higher kinase 7 activity and oncogenic potential through cellular reprograming and induction of stemness 8 properties²⁴. Further studies are needed to help ascertain the specific role of these accessory 9 driver mutations in oncohistone tumorigenesis.

10

11 Once acquired, the main driver partnership is maintained throughout the course of the disease 12 (diagnosis to autopsy), in all cells across the primary tumor site, and in tumor spread throughout 13 the brain. The obligate partner is not chosen randomly. One speculation about the phenotypic 14 advantage of the gain of additional mutations may be that the partners are selected as those best 15 suited to increase levels of mutant H3 in cells. Indeed, H3K27M mutants show a dose-dependent effect in inducing cellular proliferation^{26,27}. Canonical H3 variants are the most abundant 16 17 histones in cells and need cell-cycle division (S-phase) for synthesis, whereas non-canonical 18 H3.3 variants represent ~5% of all H3 in cells and are present throughout the cell cycle. 19 Accordingly, H3K27M mutations in cell cycle-dependent canonical histories may co-occur with 20 alterations affecting ACVR1, a growth factor that induces cell division, resulting in the synthesis 21 of wildtype and mutant H3.1 proteins. H3K27M mutations in the non-canonical H3.3 histone are 22 mainly associated with mutations affecting the TP53 pathway, as these possibly offer evasion 23 from cell death and senescence and provide the needed opportunity for the mutant H3.3K27M to

exert its effect over a longer period, effectively reshaping the epigenome and drive tumor
 formation.

3

The previously unsuspected homogeneity for main driver mutations across the course of the disease we uncover in this study indicates that efforts to cure DIPG should be directed at the oncohistone partnership, as other genetic alterations are generally sub-clonal. Our findings further indicate that needle biopsies recommended to orient care are representative of the main drivers in DIPG even if the regional heterogeneity of other secondary targetable alterations, such as PIK3CA mutations, may not be fully captured. Based on early tumor spread, efforts to cure DIPG should aim for early systemic tumor control as opposed to regimens focused on the pons.

1 Methods

2 **Patient samples**

3 All patient samples were collected with informed consent in accordance with the respective 4 Ethics Review Boards of the institutions that provided them. DIPG post-mortem specimen 5 procurement was performed as previously described¹⁹. Briefly, brainstem and cerebellum were 6 removed en bloc from the whole brain, and dissected into ~9 transverse sections. The cerebral 7 cortex was dissected into ~11 coronal sections. The brainstem, cerebellum, and cerebral cortex 8 sections were alternatively frozen or fixed in formalin. A total of 158 samples were studied by 9 immunohistochemistry and molecular analyses, representing various neuroanatomical locations 10 such as frontal, parietal, temporal, occipital lobes, thalamus, lateral ventricles, hippocampus, 11 midbrain, pons, medulla, and cerebellum (Supplementary Tables 1-3; Supplementary Fig. 1). For 12 molecular studies (RNA, DNA) 134 core punches were obtained using a biopsy punch and 13 plunger (2mm, #33-31, Integra Miltex, York, PA). All histological sections were reviewed by 14 neuropathologists (C-Y.H.; J.K.), according to the World Health Organization (WHO) 15 classification of tumors. Demographical, clinical and histopathological characteristics of all 16 specimens are presented in Supplementary Table 1.

17

18 Immunohistochemistry

Immunohistochemistry was performed on 5µm thick FFPE slides. Briefly, slides were deparaffinized, processed for epitope retrieval, DAB detected using reagents customized for the Leica BOND-MAX automated stainer (Leica Biosystems, Buffalo Grove, IL). Processed slides were probed by immunohistochemical assay for hematoxylin and eosin (H&E), Ki67, H3-K27M, and H3-K27me3 as previously described¹² (Supplementary Fig. 2). 1

2 Antibodies

Rabbit monoclonal anti-Ki67 (Biocare Medical, Concord, CA) were pre-diluted and ready to use.
Rabbit polyclonal anti-H3K27M (#ABE419 Millipore, Billerica, MA, 1:500), rabbit monoclonal
anti-H3K27me3 (C36B11, #9733 Cell Signaling, Beverly, MA 1:75) were diluted in Bond
primary antibody diluent (#AR9352 Leica Biosystems, Buffalo Grove, IL). Secondary detection
was conducted using the Bond polymer refined detection kit (Leica Biosystems, Buffalo Grove,
IL). Slides were counterstained for hematoxylin nuclear stain.

9

10 RNA and DNA extractions

Frozen tissue samples were homogenized with Trizol, and nucleic acids were phase separated using chloroform. Total RNA was extracted according to the PicoPure RNA Isolation kit (Arctrus Bioscience Inc. Mountain view, CA). Genomic DNA was extracted from frozen tissue using the Gentra Puregene DNA extraction kit, or from FFPE tissue using the QiaAmp DNA mini kit according to the manufacturer's instructions (Qiagen, Valencia, CA). All DNA quantifications were conducted using the Quant-iT Picogreen dsDNA assay kit (Life Technologies, Carlsbad, CA).

18

19 **Droplet Digital PCR**

Digital droplet PCR (ddPCR) assays were performed according to standard methods. Briefly,
each 20 ul reaction contained 1X ddPCR Supermix for Probes (Bio-Rad), 900 nM gene specific
HPLC-purified forward and reverse primer, 250 nM gene-specific mutant or wild-type LNA
probe and 12.5-25.0 ng genomic DNA. Each reaction was mixed with 60 ul Droplet Generation

1 Oil (Bio-Rad), partitioned into ~12,000 -16,000 droplets in QX100 Droplet Generator (Bio-Rad), 2 transferred to a 96-well plate and sealed. The primers and probes were designed by Integrated DNA Technologies (IDT) as follows: forward primer for H3F3A: 3 4 5'-GTACAAAGCAGACTGCCCGCAAAT-3', reverse primer 5 5'-GTGGATACATACAAGAGAGAGACTTTGTCCC-3'. Forward primer for HIST1H3B: 5'-6 ACAGACGTCTCTGCAGGCAAGC-3', reverse primer 5'-GGCGGTAACGGTGAGGCTTT-7 3'. H3F3A K27M wild-type probe (HEX) CA+C+T+C+T+T+GC and mutant probe (FAM) 8 CA+CT+C+A+T+GCG. HIST1H3B K27M wild-type probe (HEX) T+CGC+A+A+GAG+CG 9 and mutant probe (FAM) TCGC+A+T+G+AGCG. The PCRs were performed in a T100 10 Thermal Cycler (Bio-Rad) with the following cycling conditions: $1 \times (95^{\circ}C \text{ for } 10 \text{ min}), 50 \times$ 11 (95°C for 30 s, 53°C or 57°C for 60 s, with 2°C /s ramp rate and $1 \times$ (98°C for 10 min). 12 Following end-point amplification, the fluorescence intensity of individual droplets was 13 measured with the QX100 Droplet Reader (Bio-Rad) and data analysis was performed with QuantaSoft droplet reader software (Bio-Rad). Positive and negative droplet populations were 14 15 detected either automatically or manually on two-dimensional graphs and target DNA concentrations were calculated using the Poisson statistics²⁸. The absolute transcript levels were 16 17 initially computed as copies/ μ l PCR for both mutant and wild-type and then presented as percent 18 of total gene copy.

19

20 Whole-exome sequencing

Genomic DNA was extracted from multiple post-mortem samples patient using the standard extraction methods as described by Qiagen. Nextera Rapid Capture Exome kit was used to prepare the paired-end libraries according to the manufacturer's instructions using on average 36

1 ng of total starting genomic DNA. Sequencing was performed on Illumina HiSeq 2000 using 2 rapid-run mode with 100 bp paired-end reads. Next, adaptor sequences were removed; reads 3 were trimmed for quality using the FASTX-Toolkit. An in-house program was used to ensure the 4 presence of exclusively paired-reads to be used in further steps of the analysis. We next aligned 5 the reads using Burrows-Wheeler Aligner (BWA) 0.7.7 to hg19 as reference genome. Indel realignment was performed using the Genome Analysis Toolkit (GATK)²⁹ We next marked the 6 7 duplicate reads using Picard and excluded them from further analyses as previously described⁶. 8 The coverage of consensus coding sequence (CCDS) bases was assessed using GATK. The 9 average coverage over all the samples was 70x. The majority of samples had >90% of CCDS 10 bases covered by at least 10 reads and > 83% of CCDS bases covered by at least 20 reads.

11 We called SNVs and short indels using SAMtools mpileup with the extended base alignment quality (BAQ) adjustment $(-E)^{30,31}$. Next we filtered them for quality so that at least 10% of 12 reads supporting each variant call. We used both ANNOVAR³² and in-house tools to annotate 13 14 the variants and to identify whether these variants affect protein-coding sequence and if they had 15 previously been observed in datasets including the 1000 Genomes Project data set (November 16 2011), the National Heart, Lung, and Blood Institute (NHLBI) Grand Opportunity (GO) exomes 17 or in approximately 3,000 exomes previously sequenced at our center. Results of whole exome 18 sequencing are summarized in Supplementary Table 4 and presented for individual patients as 19 follows: DIPG1 in Supplementary Data 1; DIPG2 in Supplementary Data 2; DIPG3 in 20 Supplementary Data 3; DIPG4 in Supplementary Data 4; DIPG5 in Supplementary Data 5; 21 DIPG6 in Supplementary Data 6; DIPG7 in Supplementary Data 7; DIPG8 in Supplementary 22 Data 8; DIPG9 in Supplementary Data 9.

1 Exploratory targeted high-depth DNA sequencing of hotspot mutations

Genomic DNA from DIPG samples were used for high-depth sequencing using Illumina MiSeq platform. The MiSeq panel covers exons in 16 Histone H3 isoforms (10 H3.1, 2 H3.2 and 3 H3.3 genes) and covering hotspot mutations such as *IDH1* mutation (codon 132), *IDH2* (codons 140 and 172), *ACVR1* (exons 6-9) and *BRAF* (exons 11 and 15) and *PPM1D* (exon 6). Genomic DNA samples were sequenced using the MiSeq sequencing platform (Illumina) as previously described⁶ with an average coverage of > 20,000X of the analogous K27M base change across the three histone variants.

9 To estimate allele frequency of mutations identified using whole exome sequencing genomic 10 DNA from the same samples was also used for high-depth sequencing on the MiSeq platform 11 with an average coverage of > 4,000 x. Reads were mapped to the reference genome (human 12 hg19) using the BWA genome alignment^{30,31}. Alignment files were fed to an in-house program 13 to calculate different variations' allele frequencies at the desired positions.

14

15 **RNA Sequencing**

We used Qiagen RNeasy Lipid Tissue Mini kit to extract RNA from tumor DIPG3 (Pons 1 and Pons 2) according to manufacturer's instructions. Library was prepared using rRNA depletion methods according to instruction from Epicentre (manufacturer) to achieve greater coverage of mRNA. Paired-end sequencing was performed on the Illumina HiSeq 2000 platform.

20

21 **DNA Methylation Analysis**

22 Methylation profiling data was analyzed as previously described⁶. The raw data were subject to 23 quality control and preprocessing utilizing the R package minfi, and normalized for technical

1 variation between the Infinium I and II probes using the SWAN method. We removed probes on 2 **SNPs** sex chromosomes (chrX, Y), those containing (dbSNP: 3 http://www.ncbi.nlm.nih.gov/SNP/) as well as non-specific probes that bind to multiple genomic 4 locations. Unsupervised hierarchical clustering was performed using average linkage and 5 Pearson rank correlation distance on the top 5,000 most variable probes selected based on 6 standard deviation of beta values (β -values).

7

8 Copy Number Variation analysis

9 To study copy number variations in our samples we developed an in-house program to calculate 10 the deviation of B allele frequency from 50% as well as normalized coverage from whole exome sequencing data (adapted from methods used in FishingCNV³³ and ExomeAI³⁴). Different CNV 11 12 events (duplication, deletion, copy neutral LOH) were called based upon the B allelic imbalance 13 and the status of the normalized coverage as follow: Deviation from 50% B allele frequency and 14 an increase in normalized coverage was considered as amplification, Deviation from 50% B 15 allele frequency and decrease in normalized coverage as deletion, and Deviation from 50% B 16 allele frequency and no change in the normalized coverage was considered as potential copy 17 neutral loss of heterozygosity. We mainly assessed the CNV events at the chromosomal arm 18 level. The results of our CNV detection are presented in Supplementary Fig. 5 and 19 Supplementary Table 14.

20

21 OncoScan verification of the CNV events

OncoScan® FFPE Assay Kit, provided by Affymetrix, is a platform based on Molecular
Inversion Probe (MIP) technology, used to asses copy number and loss of heterozygosity using

1 small amounts of DNA from FFPE samples. We performed this assay on several samples in 2 order to verify our WES based CNV detection method. Genomic DNA was quantified using 3 Picogreen protocol (Quant-iTTM PicoGreen® dsDNA Products, Invitrogen, P-7589) and read on 4 SpectraMAX GeminiXS Spectrophotometer. The OncoScan® FFPE Assay Kit was used 5 according to the manufacturer's instructions (Affymetrix). A GeneAmp PCR system 9700 6 Thermal Cycler (Life Technologies) was used from the Anneal stage to the Denaturation stage. 7 QC gels of the PCR and HaeIII digest products were performed on E-Gel® 48 4% Agarose Gels 8 using Mother E-Base[™] Device (Life Technologies) and imaged with SYNGENE GeneGenius 9 Bio Imaging System (Syngene). The digest DNA target was hybridized on OncoScan® Array, 10 (Affymetrix) and incubated at 49°C in the Genechip® Hybridization oven 640 (Affymetrix) for 11 17 hours at 60 rpm. OncoScan® Arrays were then washed in a GeneChips® Fluidics Station 450 12 (Affymetrix) using OncoScan® Stain and Wash Reagents according to the manufacturer's 13 instructions (Affymetrix). The microarrays were finally scanned on a GeneChip® scanner 3000 14 (Affymetrix). Data QC analysis was performed with the OncoScan Consol 1.2.0.50 software 15 (Affymetrix) using OncoScan Analysis Library files r1.1. OncoScan® Positive and negative 16 Control supplied in the OncoScan® FFPE Assay Kit were used for internal controls to assess the 17 performance of each run. CNV events were called using the normalized data using Nexus 18 Express for OncoScan 3.1 (Affymetrix). The OncoScan plots are represented in Supplementary 19 Fig. 6.

20

21 **Constructing evolutionary trees**

We used PhyloWGS³⁵ to reconstruct the tumor phylogeny, which uses a Bayesian approach to infer cellular frequencies from mutation allele frequencies. It applies Dirichlet process to cluster

1 mutations with similar cellular frequencies and the tree-structured stick-breaking process to 2 model the clonal evolutionary tree. For multi-region samples from the same patient, we 3 normalized the read counts used for phylogenetic tree construction by copy number counts from 4 CNV analysis. Read counts were corrected for the CNV events (Supplementary Fig. 5; Table 3) 5 for each sample as follow: in case of duplication Ref' = Ref, Alt' = Alt/2; in case of deletion Ref'6 = Ref + Alt, Alt' = Alt; in case of a gene on chromosome X Ref' = Ref *2 + Alt, Alt' = Alt; in 7 case of Copy Neutral LOH Ref' = Ref+Alt/2, and Alt' = Alt/2. The reconstructed trees were redrawn in Graphviz by using in-house scripts adapted from AncesTree³⁶ to show the trajectories 8 9 of mutations with contribution greater than 0.05.

10

11 Differential Expression and Gene Set Enrichment Analysis

12 We aligned RNASeq data from DIPG3-Pons 1 and DIPG3-Pons 2 (RNA extraction and sequencing protocol described before) using STAR 2.3.0³⁷, and analyzed differentially expressed 13 14 genes using DeSEQ2³⁶ The top 200 over expressed and top 200 under expressed genes in 15 DIPG3-Pons 2 (the sub-clone with PIK3CA activating mutation) were analyzed for geneset enrichment using both AmiGo 2 tool³⁸ provided by Gene Ontology and DAVID³⁹. We used 16 17 PANTHER Overrepresentation Test (release 20150430) for analysis type by Amigo 2 18 (annotation version and release date: GO Ontology database Released 2015-08-06.) The top 19 pathways found by AmiGo 2 to be enriched with enrichment folds higher than 5 and (Bonferroni 20 < 0.05) were retained. We used functional annotation clustering and set the stringency to the 21 highest in DAVID and filtered the results for enrichment folds higher than 5 (Bonferroni corrected *p*-value < 0.05.) We used the set of genes with at least 50 RNASeq reads in both 22 23 DIPG3 Pons1 and 2 combined as background gene set in this analysis (Supplementary Data 10).

1

2 URLs

- 3 FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/; Genome Analysis Toolkit (GATK),
- 4 http://www.broadinstitute.org/gsa/wiki/; Picard, http://picard.sourceforge.net/; SAMtools,
- 5 http://samtools.sourceforge.net/; dbSNP, http://www.ncbi.nlm.nih.gov/SNP/.
- 6 Amigo 2, http://amigo.geneontology.org/amigo; DAVID, https://david.ncifcrf.gov/.

7 Accession Numbers

8 Whole-exome sequencing data for all tumors (along with RNA sequencing data for DIPG3), and 9 also DNA methylation profiles can be accessed through the European Genome Archive (EGA) at 10 the following accession EGAS00001001654 and Gene Expression Omnibus (GEO) under 11 accession GSE77353 respectively.

1 References

- Buczkowicz, P., Bartels, U., Bouffet, E., Becher, O. & Hawkins, C. Histopathological
 spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic
 implications. *Acta Neuropathol* 128, 573-581 (2014).
- Khuong-Quang, D.A. *et al.* K27M mutation in histone H3.3 defines clinically and
 biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. *Acta Neuropathol* 124, 439-447 (2012).
- 9 3. Schwartzentruber, J. *et al.* Driver mutations in histone H3.3 and chromatin remodelling
 10 genes in paediatric glioblastoma. *Nature* 482, 226-231 (2012).
- Wu, G. *et al.* Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas
 and non-brainstem glioblastomas. *Nat Genet* 44, 251-253 (2012).
- 13 5. Buczkowicz, P. *et al.* Genomic analysis of diffuse intrinsic pontine gliomas identifies
 14 three molecular subgroups and recurrent activating ACVR1 mutations. *Nat Genet* 46,
 15 451-456 (2014).
- 16 6. Fontebasso, A.M. *et al.* Recurrent somatic mutations in ACVR1 in pediatric midline
 17 high-grade astrocytoma. *Nat Genet* 46, 462-466 (2014).
- 18 7. Taylor, K.R. *et al.* Recurrent activating ACVR1 mutations in diffuse intrinsic pontine
 19 glioma. *Nat Genet* 46, 457-461 (2014).
- 8. Wu, G. *et al.* The genomic landscape of diffuse intrinsic pontine glioma and pediatric
 non-brainstem high-grade glioma. *Nat Genet* 46, 444-450 (2014).
- Kumar, A. *et al.* Deep sequencing of multiple regions of glial tumors reveals spatial
 heterogeneity for mutations in clinically relevant genes. *Genome Biol* 15, 530 (2014).

1	10.	Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer
2		evolutionary dynamics. Proc Natl Acad Sci USA 110, 4009-4014 (2013).
3	11.	Szerlip, N.J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and
4		PDGFRA amplification in glioblastoma defines subpopulations with distinct growth
5		factor response. Proc Natl Acad Sci U S A 109, 3041-3046 (2012).
6	12.	Bechet, D. et al. Specific detection of methionine 27 mutation in histone 3 variants
7		(H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 128, 733-741
8		(2014).
9	13.	Caretti, V. et al. Subventricular spread of diffuse intrinsic pontine glioma. Acta
10		Neuropathol 128, 605-607 (2014).
11	14.	Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by
12		multiregion sequencing. N Engl J Med 366, 883-892 (2012).
13	15.	Eleveld, T.F. et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway
14		mutations. Nat Genet 47, 864-871 (2015).
15	16.	Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma.
16		Nature 482 , 529-533 (2012).
17	17.	Johnson, B.E. et al. Mutational analysis reveals the origin and therapy-driven evolution
18		of recurrent glioma. Science 343, 189-193 (2014).
19	18.	Walker, D.A. et al. A multi-disciplinary consensus statement concerning surgical
20		approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas
21		in childhood (CPN Paris 2011) using the Delphi method. Neuro Oncol 15, 462-468
22		(2013).

1	19.	Kambhampati, M. et al. A standardized autopsy procurement allows for the
2		comprehensive study of DIPG biology. Oncotarget 6, 12740-12747 (2015).
3	20.	Castel, D. et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups
4		of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta
5		Neuropathol 130, 815-827 (2015).
6	21.	Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell
7		149 , 979-993 (2012).
8	22.	Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biol
9		16 , 91 (2015).
10	23.	Zhang, L. et al. Exome sequencing identifies somatic gain-of-function PPM1D mutations
11		in brainstem gliomas. Nat Genet 46, 726-730 (2014).
12	24.	Koren, S. et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary
13		tumours. <i>Nature</i> 525 , 114-118 (2015).
14	25.	Karar, J. & Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci
15		4 , 51 (2011).
16	26.	Lewis, P.W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in
17		pediatric glioblastoma. Science 340, 857-861 (2013).
18	27.	Funato, K., Major, T., Lewis, P.W., Allis, C.D. & Tabar, V. Use of human embryonic
19		stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346,
20		1529-1533 (2014).
21	28.	Hindson, C.M. et al. Absolute quantification by droplet digital PCR versus analog real-
22		time PCR. Nat Methods 10, 1003-1005 (2013).

1	29.	McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
2		analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303 (2010).
3	30.	Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
4		transform. Bioinformatics 25, 1754-1760 (2009).
5	31.	Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
6		2078-2079 (2009).
7	32.	Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
8		variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010).
9	33.	Shi, Y. & Majewski, J. FishingCNV: a graphical software package for detecting rare
10		copy number variations in exome-sequencing data. Bioinformatics 29, 1461-1462 (2013).
11	34.	Nadaf, J., Majewski, J. & Fahiminiya, S. ExomeAI: detection of recurrent allelic
12		imbalance in tumors using whole-exome sequencing data. Bioinformatics 31, 429-431
13		(2015).
14	35.	Deshwar, A.G. et al. PhyloWGS: reconstructing subclonal composition and evolution
15		from whole-genome sequencing of tumors. Genome Biol 16, 35 (2015).
16	36.	Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
17		for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
18	37.	Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21
19		(2013).
20	38.	Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics
21		25 , 288-289 (2009).
22	39.	Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of
23		large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57 (2009).

1 Acknowledgements

2 The authors would like to express their sincere gratitude toward all the patients' families, as well 3 as the staff at the McGill University and Genome Ouebec Innovation Centre for excellent 4 technical expertise, library preparation and sequencing. This work was performed within the 5 context of the I-CHANGE consortium (International Childhood Astrocytoma iNtegrated 6 Genomics and Epigenomics consortium) and supported by funding from Genome Canada, 7 Genome Quebec, The Institute for Cancer Research of the Canadian Institutes for Health 8 Research (CIHR) McGill University and the Montreal Children's Hospital Foundation. It was 9 also supported by UL1TR000075 and KL2TR000076 from the NIH National Center for 10 Advancing Translational Sciences, The Smashing Walnuts Foundation (Middleburg, VA), The 11 Zickler Family Foundation (Chevy Chase, MD), Goldwin Foundation (St. Lincoln, NE), The 12 Piedmont Community Foundation (Middleburg, VA), The Musella Foundation (Hewlett, NY), 13 The Mathew Larson Foundation (Franklin Lake, NJ), and Brain Tumor Foundation for Children (Atlanta, GA). N. Jabado is a member of the Penny Cole lab and the recipient of a Chair de 14 15 Recherche from le Fond de Recherche en Sante au Quebec. J. Majewski holds a Canada Research Chair (tier 2). T. Gayden is supported by a studentship from the CIHR. D. Bechet is 16 17 supported by a studentship from the T.D trust/Montreal Children's Hospital Foundation. E. 18 Panditharatna is a predoctoral student in the Molecular Medicine Program of the Institute for 19 Biomedical Sciences at the George Washington University. This work is from a dissertation to 20 be presented to the above program in partial fulfillment of the requirements for the Ph.D. degree.

- 22
- 23
1

2 Author contributions

- 3 E.P., L.M., D.F., D.B. performed experiments, E.P., L.M., H.N., R.L., T.G., M.K., E.I.H., M.O.
- 4 S.P.C., A.S., C.Y.H., J.K., N.J., J.N., J.M. analyzed the data and produced figures and tables,
- 5 K.L.L., B.E., W.J.I., A.S.M., C.S., K.E.W., R.J.P. provided tissue samples. N.J., J.N. and J.M.
- 6 provided project leadership and designed the study.
- 7

8 Conflict of Interest

- 9 The authors declare that they have no competing financial interests.
- 10
- 11

1 Figure Legends

Figure 1. Oncogenic alterations in 41 sub-regions from nine DIPG patients from whole exome sequencing data. Samples representing different anatomical locations within each patient are represented in columns. The mutations (in rows) were selected based on published datasets in pediatric glioblastoma and specifically DIPG. Mutations were divided into two subgroups; driver mutations which are essential for tumor initiation/maintenance and accessory driver mutations, which can further promote and accelerate tumor growth, but are not absolutely essential for tumor initiation or maintenance.

9

10 Figure 2. Selected examples of clonal evolution within DIPG tumors. Left: histograms show 11 the raw allele frequencies (whole exome sequencing data) for each somatic mutation in different 12 autopsy regions within each tumor. Red: ubiquitous mutations across regions; yellow: mutations 13 shared in at least two regions; blue: mutations seen in only one region. Right: Phylogenetic trees 14 constructed from the mutation allele frequencies of deep amplicon sequencing data showing the 15 order of evolution along with support probabilities (upper portions of graphs) and clonal mixing 16 proportions within samples (lower portions). For clarity, only mutations selected to be likely 17 oncogenic are shown. A) DIPG5: a rare case harboring both TP53 and PPM1D mutations, which 18 are generally found to be mutually exclusive. PPM1D and TP53 mutations occur in distinct 19 clones and are both secondary to H3K27M. ATRX is also secondary and subclonal. B) DIPG6: 20 while it is impossible to resolve the order of H3/TP53/ATRX mutations' appearance, PIK3CA is 21 clearly sub-clonal and appears in the later stages of evolution within this tumor. C) DIPG2: the 22 H3.1 K27M and ACVR1 main driver mutations are ubiquitous, occur at similar frequencies 23 across all samples, and their mutations order cannot be resolved. Conversely, other accessory

29

driver mutations are clearly secondary in order of appearance, and are present only in distinct
subclones.

3

4 Figure 3. Tumor spread in DIPG. A) Tumor spread in DIPG2 in the thalamus, cerebellum and 5 brain stem. Tumor extension in thalamus harbors secondary mutation PIK3CA, MAX, and 6 PTEN which indicates late spread from both Pons 1 and Pons 2. Extension towards cerebellum is 7 relatively early in the tumor evolution as it lacks secondary mutations found in the primary 8 tumor and other brainstem spread. B) Evolution of tumor in patient DIPG3. Autopsy revealed 9 two morphologically and histologically distinct regions of the tumor, indicated as DIPG3 Pons 1 10 (low-grade) and DIPG3 Pons 2 (high-grade). Exome sequencing identified 11 SNVs and several 11 large scale CNAs common to both regions. Shared alterations included H3.2 K27M and ACVR1 12 G328V mutations that are likely the main driver mutations in this patient. The analysis also 13 indicated a clear clonal substructure of the two regions, with 18 SNVs and 1 CNA found only in 14 DIPG3 Pons 1, and 11 SNVs and 3 CNAs unique to DIPG3 Pons 2. Intriguingly, DIPG3 Pons 2 15 carries the activating PIK3CA H1047R mutation, which occurs early in the evolution of this subclone judging by its high allelic frequency. PIK3CA H1047R is associated with multi-potency²⁴ 16 17 and PI3K activation with angiogenesis and growth and this mutation likely contributes to tumor 18 aggressiveness and high-grade features of Pons 2 compared to Pons 1 in DIPG3. Scale bar 500 19 μm.