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APPENDIX – Independent origins as a special case of the

common origin

Here we show in more detail our sketched proof that in the model selection proposed by [1] the

IO hypothesis is a particular case of the model for UCA, if we assume a single evolutionary

model M [2, Suppl Mat]. However, this conclusion remains valid if we relax the fixed model

assumption: instead of a single evolutionary model we can think of variable models along the

tree.

The following diagram represents how the UCA model (at the left) can lead to the IO model (at

the right), where we see that after the “removal” of the internal branch the remaining neighboring

branches have one less degree of freedom since the likelihood is the same whenever their sum

is the same. In other words, for each independent origin three internal branches are fixed: one

at ∞, representing the de novo appearance, and one at each of its sides becoming redundant

by the pulley principle. The parameters a and c are constants between zero and one and a

natural choice is a = c = 1, while A, B, C and D are subtrees (with one or more leaves).
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The justification for fixing the branch length at infinity comes from the fact that the Markov

chains used in amino acid replacement models converge to their equilibrium distributions. That

is, the probability P(x | z, t, M) of going from state z to state x in time t under evolutionary

model M becomes independent of z when t→ ∞, and approaches the equilibrium frequency

πx of x under model M:

lim
t→∞

P(x | z, t, M) = πx

The likelihood P(X | T, t, M) of a phylogenetic tree T with branch length vector t arbitrarily

rooted at r can be calculated for a given alignment column X as

P(X | T, t, M) = ∑
z

πzLr(z | t, M) (1)

where Lr(z | t, M) is the partial likelihood of node r for amino acid state z, and can be calculated

recursively by

Lr(z | t, M) =
[
∑
x

P(x | z, ta, M)LA(x | t, M)
][

∑
y

P(y | z, tb, M)LB(y | t, M)
]

(2)

Assuming the subtree with branch lengths ta, tb ∈ t connecting r to (internal or external) nodes

A and B represented by
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In the case when ta and tb go to infinity then as we saw P(x | z, ta, M) = πx and P(y |

z, tb, M) = πy, and therefore we have that equation 2 reduces to

Lr(z | t, M) =
[
∑
x

πxLA(x | t, M)
][

∑
y

πyLB(y | t, M)
]
= W (3)

which is independent of z, and thus the site likelihood of equation 1 becomes

P(X | T, t, M) = ∑
z

πzLr(z | t, M) = ∑
z

πzW = W ∑
z

πz = W (4)

By comparing each of the two terms in equation 3 and equation 1 we can see that W is the
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product of the site likelihoods of two independent trees under the model described in [1],

arbitrarily rooted at A and B. That is, if we represent the likelihood under the IO hypothesis

as calculating independently the likelihoods of the subtrees rooted at A and B and multiplying

them, then we have that each of these terms will be ∑x πxLρ(x | t, M) where ρ = (A, B), as

in equation 1. The product of these terms is identical to the likelihood of a single tree with an

infinite branch length connecting A and B, described by equation 4.

The extension for distinct amino acid replacement models over the tree is straightforward

(replacing M by M = (M1, . . . , M2N−2) for N leaves), with the caveat that despite it can be

handled by sequence simulation programs like INDELible [3], it is not implemented yet in

popular phylogenetic reconstruction methods. Therefore the lack of correspondence of models

M between the hypotheses is a limitation of the software employed, and not of the hypothesis

test as devised.
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