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Abstract

These are the supplementary materials for:

A. Ghaffarizadeh, S.H. Friedman, and P. Macklin, BioFVM: an efficient parallelized diffusive
transport solver for 3-D biological simulations, Bioinformatics. (2015, in review)

Any corrections will be posted online at BioFVM.MathCancer.org

Motivation: Computational models of multicellular systems require solving systems of PDEs for release, up-
take, decay, and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs,
growth substrates, and signaling factors on cell receptors and subcellular systems biology.
Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can sim-
ulate release and uptake of many substrates by cell and bulk sources, diffusion, and decay in large 3D domains.
It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single super-
computer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions
are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of
a larger simulator.
Availability: BioFVM is written in C++ with parallelization in OpenMP. It is maintained and available for
download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0).
Contact: paul.macklin@usc.edu
Supplementary information: The full algorithm and convergence/performance testing are provided in sup-
plementary materials and at BioFVM.MathCancer.org. A tutorial is included in each BioFVM download.

1

http://BioFVM.MathCancer.org
http://BioFVM.MathCancer.org
http://BioFVM.sf.net
paul.macklin@usc.edu
http://BioFVM.MathCancer.org


Contents

1 Introduction – Equations solved by BioFVM 3

2 Example: Oxygen and VEGF distribution in a large 3-D tissue 3
2.1 Further discussion on blood vessel sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Computational details 6
3.1 Design goals and philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Domain discretization and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Operator splitting and the overall algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Finite volume method (FVM): Voronoi meshes and Cartesian meshes . . . . . . . . . . . . . . . . . 7

3.4.1 Locally-one dimensional (LOD) method for Cartesian meshes . . . . . . . . . . . . . . . . . 7
3.4.2 Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 Cell supply/uptake solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Approximating Dirichlet conditions on selected voxels . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Convergence testing 10
4.1 Example 1: 1-D diffusion (with analytical solution) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Convergence in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Convergence in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Selecting ∆t for reasonable accuracy at ∆x = 20µm resolution . . . . . . . . . . . . . . . . 12

4.2 Example 2: 3-D diffusion-reaction with bulk sources . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Convergence in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Convergence in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution . . . . . . . . . . . . . . . . 15

4.3 Example 3: 3-D diffusion-reaction with bulk sources, grid-aligned cell uptake . . . . . . . . . . . . 15
4.3.1 Convergence in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Convergence in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution . . . . . . . . . . . . . . . . 17

4.4 Example 4: 3-D diffusion-reaction with bulk sources, off-lattice cell uptake . . . . . . . . . . . . . . 18
4.4.1 Convergence in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2 Convergence in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution . . . . . . . . . . . . . . . . 20

4.5 Example 5: 3-D diffusion-reaction with bulk sources, off-lattice cell uptake and supply . . . . . . . 21
4.5.1 Convergence in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5.2 Convergence in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution . . . . . . . . . . . . . . . . 22

5 Performance testing 23
5.1 Performance scaling with number of substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Performance scaling with number of voxels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Performance scaling with number of cells (uptake/source terms) . . . . . . . . . . . . . . . . . . . . 24

6 References 26

2



1 Introduction – Equations solved by BioFVM

In all the following sections, we solve the following system of partial differential equations on a computational
domain Ω (with boundary ∂Ω) for a vector of densities ρ

∂ρ

∂t
=

diffusion︷ ︸︸ ︷
∇ · (D ◦ ∇ρ)−

decay︷ ︸︸ ︷
λ ◦ ρ+

net source︷︸︸︷
f in Ω (1)

(D ◦ ∇ρ) · n = 0 on ∂Ω (2)

ρ(x, t0) = g in Ω. (3)

Above, a◦b denotes the Hadamard (termwise) product ([a◦b]i = aibi for each i). Similarly, we use a(b to denote
termwise division ([a( b]i = ai/bi for each i); 1 and 0 are vectors of all one and all zero, respectively, with same
dimension as ρ. Also,

∇ · (a ◦ ∇b) = ∇ · [a1∇b1, . . . , an∇bn] = [∇ · (a1∇b1),∇ · (a2∇b2), . . . ,∇ · (an∇bn)]

∇a · n = [∇a1,∇a2, . . . ,∇an] · n = [∇a1 · n, . . . ,∇an · n]

We shall use net sources of the following form:

f = fbulk(x, t) + fcells(x, t). (4)

We take the following form for net bulk sources (including reactions):

fbulk =

supply term︷ ︸︸ ︷
S (x, t) ◦ (ρ∗ − ρ)−

uptake term︷ ︸︸ ︷
U (x, t) ◦ ρ+

remainder︷ ︸︸ ︷
R (ρ,x, t), (5)

where S is the vector of supply rates (one for each substrate), ρ∗ are the saturation densities, and U are the
uptake rates. In the formulation above, reactions can be included in the “remainder” term R or in U when
quasi-linearized; for the first version of the software, we shall set R ≡ 0, but the nonzero case is readily addressed
by adding an additional solver. See Section 3.3 on operator splitting below. Also, in the first version of the solver,
we assume D is constant; the more general case will be handled in future versions of the software.

The cell-based net source term fcells models substrate secretion and uptake across the cells’ volumes:

fcells =
∑
k

1k(x)


supply term︷ ︸︸ ︷

Sk ◦ (ρ∗k − ρ)−

uptake term︷ ︸︸ ︷
Uk ◦ ρ

 , (6)

where
{
xk,Wk,Sk,Uk,ρ

∗
k

}
is a set of “cells” centered at position xk, with volume Wk, uptaking ρ at rates Uk

and secreting ρ with saturation densities ρ∗k at rates Sk. For any cell k, 1k(x) is an indicator function satisfying

1k(x) =

{
1 if x is in cell k

0 elsewhere.
(7)

2 Example: Oxygen and VEGF distribution in a large 3-D tissue

To demonstrate the code, we simulated oxygen release by blood vessels, consumption by a large number of tumor
cells, and a simplified hypoxic response by the tumor cells. Oxygen is released by the vessels at a large rate so that
pO2 ∼ ρ∗O2 = 70 mmHg on the vessels and approximately 50-60 mmHg nearby (typical of normal breast tissue)
[23, 16]; it diffuses through the stroma (D = 105 µm2/min [8] and λ = 0.1 min−1 for a 1 mm diffusion length
scale (

√
D/λ) in low-density stroma [14]), and is consumed by tumor cells. We set the tumor cell uptake rate

Uk according to the oxygen diffusion length scale L =
√
D/Uk, using an L with order of magnitude ∼ 100 µm in

dense tumor tissue [14]. For L = 100 µm, Uk = 10 min−1; we used this value in the example.
More precise measurements find the diffusion length scale to be 140-190 µm [18, 7, 22]. These more precise

diffusion lengths can be directly related the tumor cell oxygen consumption rates using recent work by Grimes
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Figure 1) Simulation of oxygen and VEGF diffusion in a highly vascularized tissue with a multifocal tumor lesion; vasculature is
rendered up to the gray clipping plane (panel A). Vessels and tumor cells in the gray clipping plane (panel B). Oxygen
distribution in the (panel C) shows significant hypoxia (blue areas, pO2 < 15 mmHg) within the tumor (red outline). Hypoxic
tumor cells release VEGF to stimulate further vascularization (panel D).

et al. [6, 5], which established a steady-state model for oxygen diffusion in both cylindrical and spherical configu-
rations. The increased diffusion distances would yield lower oxygen consumption rates. We note that lower oxygen
consumption rates may allow computations with a larger time step size. See Sections 4.2 and 4.3.

Hypoxic tumor cells accumulate HIF-1α in low oxygen conditions [16]. (HIF-1α is a cellular hypoxia “sensor”
molecule that stabilizes and accumulates in the absence of oxygen [10].) HIF-1α accumulation reaches half maxi-
mum at pO2 ≈ 11-15 mmHg (1.5-2% oxygen [16]), and reaches its maximum value at pO2 ≈ 4 mmHg (0.5% oxygen
[16]). Increased HIF-1α levels can trigger numerous downstream phenotype changes, including secretion of VEGF
(vascular endothelial growth factor). Hypoxic phenotype changes (e.g., VEGF secretion to induce angiogenesis
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[16, 23]) can be observed through gene expression and proteomic changes at 7-8 mmHg [23].
For technical illustration, we use a simplified hypoxic response model where VEGF secretion begins at pO2 =

15 mmHg (where HIF-1α expression is first observed), and increases as oxygen tension is decreased towards the
onset of phenotypic changes (7-8 mmHg), using the following form:

Si =

{
max

(
15−pO2

15−8 , 1
)

if pO2 < 15 mmHg

0 otherwise.
(8)

In the simulation, the VEGF diffuses into the tissue with an ∼ 300 µm diffusion length scale (chosen for this
example to exceed the oxygen diffusion length scale).

In Figure 1, we show a simulation of 1 hour for this example in 125 mm3 of vascularized tissue with a large
irregular tumor at 20 µm resolution (15,625,000 voxels) and using and ∆t = 0.01 min. Panels A and B show the
blood vessels (red curves) and tumor cells (green spheres) in this large domain. In panel A, the vasculature is
rendered up to a gray clipping plane for clearer illustration. Panel B shows the tumor cells and vessels contained in
the gray clipping plane. Panels C-D shows the concentration of oxygen and VEGF in this plane. The red contour
marks the tumor boundary. This simulation—with 2.8 million cell source/sink terms—required approximately 80
minutes on a quad-core desktop computer (Intel i7-4790, 3.60 GHz, 16 GB of memory). As we shall show below,
simulations on smaller domains in the 1-1.5 million voxel size range take approximately 5-10 minutes to complete
60 minutes of diffusion.

The code to replicate this result is included in every BioFVM download as main experiment.cpp. Users can
either create their own initial cell and vessel positions or use the positions from this example. These initial cell and
vessel positions are available at the BioFVM SourceForge site, under “Benchmark Datasets/Bioinformatics main example.”
The parameters used in this simulation are provided in Table 1.

Table 1: Parameters used in the simulation of Example 1.

Parameter Description Value Units

DO2 oxygen diffusion coefficient 1.0e5 µm2/min
DVEGF VEGF diffusion coefficient 1.0e3 µm2/min
λO2 oxygen “decay” rate 0.01 min−1

λVEGF VEGF “decay” rate 0.1 min−1

ρ∗O2
saturation oxygenation 70 mmHg

ρ∗VEGF saturation VEGF value 1.0 dimensionless
UO2 oxygen uptake rate 10.0 min−1

SO2 oxygen release rate 10.0 min−1

SVEGF VEGF release reate 1.0 min−1

∆t time step size 0.01 min

2.1 Further discussion on blood vessel sources

Similar to many existing models (e.g., Frieboes et al. [3], Powathil et al. [19], Frieboes et al. [4] and Robertson-Tessi
et al. [20]), we simulated blood vessels as line sources, approximated as a series of point sources (with Dirac delta
functional form), using cell-centered sources as discussed in the previous section. This simplified the example and
allows us to model substrate densities in tissues near vessels. However, blood vessels often have cross-sectional
area larger than cells (potentially spanning multiple voxels).

Thus, it would be more ideal to model vessels as bulk sources. In this approach, we would set the “target” ρ∗

substrate densities equal to physiological value on the vessel outer walls, but note that any voxels “inside” a vessel
may have non-physiologic values. Alternatively, one could set aside specific voxels for the vessel interiors, set the
substrate concentrations to the arterial/venous value in the vessel voxels (e.g., from a separate flow code), and
then change the diffusion coefficient along the boundaries of these vessel voxels to simulate perfusion across vessel
walls. The first approach can be implemented in the current version of BioFVM, using bulk sources. The second
approach ideally would require more general, non-Cartesian volumetric meshes, and a spatially varying diffusion
coefficient. Variable diffusion coefficients are planned for later versions of BioFVM, but this will require a much
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more complex Thomas solver implementation with greater memory cost. Non-Cartesian lattices are also planned
for future releases, but de-coupling dimensions is no longer possible, so either iterative matrix solvers are required
(for implicit diffusion discretizations) or very small time steps (for explicit discretizations).

3 Computational details

The code is implemented in C++11, with parallelization in OpenMP. We have tested and support gcc (32-bit and
64-bit) Version 4.9.0 or later; in Windows, we use MinGW-W64 [17] (gcc Version 4.90 or better). The code does
not require any installation or alteration of system environment variables (e.g., path); BioFVM.h can be included
in the project, and the BioFVM*.h and BioFVM*.cpp files can simply be copied to the project’s directory. The
only external dependency is pugixml [9] (for XML parsing); a compatible version of this dependency is included
with the BioFVM download.

3.1 Design goals and philosophy

• Goal: Simulate at least 5-10 diffusing substrates in 3-D, with a desktop workstation/supercomputer node.

• Goal: Simulate 3-D domains with at least 1 million voxels, with a desktop workstation/supercomputer node.

• Emphasize solving cell sources and sinks most commonly expected in biological problems.

• Use schemes that are stable but simple to implement.

• Reduce complexity by minimizing external dependencies. Never require an entire library if only using one
or two functions.

• Prioritize earlier software release at first-order time, second-order spatial accuracy, rather than later release
on higher-order time accuracy. Later releases can increase accuracy as needed.

• Prioritize earlier release on simple Cartesian meshes over full Voronoi mesh generality. Later releases can
support more general meshes as needed.

• Simplify diffusion discretization to allow straightforward OpenMP parallelization.

• Prioritize execution speed over memory footprint.

3.2 Domain discretization and notation

Let {Ωi}Ni=0 be a set of voxels satisfying
⋃N
i=0 Ωi = Ω, with centroids {xi}Ni=0, volumes {Vi = |Ωi|}Ni=0, and bound-

aries {Σi = ∂Ωi}Ni=0. For each voxel i, let Ni be the index set of neighboring voxels. For any voxel i and for each
j ∈ Ni, let Σij = Σi ∩ Σj be the shared boundary between Ωi and Ωj , with centroid xij , outward normal vector
(into Ωj) nij , and surface area Sij = |Σij |. Define ∆xij = xj − xi and ∆xij = |∆xij |. Let Dij = D(xij).

For a fixed time step size ∆t, let tn = t0 +n∆t. For any voxel Ωi and any time t ≥ t0, define uni =
∫

Ωi
ρn(x)dV ,

and denote the mean density ρ at time tn in voxel Ωi by

ρni =
uni
Vi

=

∫
Ωi
ρdV

Vi
. (9)

For any other function f(x, t) (e.g., bulk sources), denote fni = f(xi, tn) for any voxel Ωi and discretized time tn.

3.3 Operator splitting and the overall algorithm

We solve Eqn. 1 by splitting the overall operator into several simpler operators, each of which can individually
be solved by tailored, optimized algorithms [15]. This allows extra flexibility in future performance/accuracy
tradeoff decisions, and allows the introduction of future operators (e.g., advective terms) without rewriting the
main solvers. As noted in section 1, we set R ≡ 0. Adding a reaction term is straightforward by generalizing the
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operator splitting: follow the other steps by an additional solver for the reaction term, such as by quasi-linearizing
the operator and using an implicit solver.

To advance the solution from ρn at time tn to ρn+1 at time tn + ∆t, we shall use a first-order splitting [15]:

1. Diffusion-decay: Solve for σ:
σ − ρn

∆t
= ∇ · (D ◦ ∇σ)− λ ◦ σ (10)

See Section 3.4 for details on this solver (and particularly Section 3.4.1 on our LOD implementation for
Cartesian meshes). Note that this uses a stable, implicit time discretization.

2. Bulk supply/uptake: Solve for σ∗ with the implicit time discretization:

σ∗ − σ
∆t

= S(x, t) ◦ (ρ∗ − σ∗)−U(x, t) ◦ σ∗

which can then be solved for σ∗i at each voxel Ωi by:

σ∗i =
(
σi + ∆tSi(t) ◦ ρ∗

)
(
(
1 + ∆tSi(t) + ∆tUi(t)

)
(11)

In practice, σ∗ can overwrite σ on the same data array, thus reducing memory allocation and copy time
costs and accelerating the solver. These operations can be safely parallelized across the processor cores by
OpenMP.

3. Cell supply/uptake: Solve for ρn+1 with the implicit time discretization:

ρn+1 − σ∗

∆t
=
∑
k

1k (x)
[
Sk ◦

(
ρ∗k − ρn+1

)
−Uk ◦ ρn+1)

]
. (12)

See Section 3.5 for details on this solver. In practice, ρn+1 can overwrite σ∗ on the same data array, thus
reducing memory allocation and copy time costs and accelerating the solver.

3.4 Finite volume method (FVM): Voronoi meshes and Cartesian meshes

We use the finite volume method (FVM) [2] to solve Eqn. 10 with Neumann boundary conditions. We will assume
a Voronoi mesh, so that in particular, xij = 1

2 (xi + xj) and nij = ∆xij/∆xij for any neighboring voxels i and j.
For any voxel i, we integrate Eqn. 10 over Ωi and apply the divergence theorem, obtaining:

1

∆t

∫
Ωi

(σ∗ − ρn) dV =

∫
∂Ωi

(D ◦ ∇σ∗) · ndS −
∫

Ωi

λ ◦ σ∗dV

=⇒ 1

∆t
(σ∗iVi − uni ) ≈

∑
j∈Ni

Dij ◦
(
σ∗j − σ∗i

∆xij

)
Sij − λ ◦ σ∗iVi (13)

Finally, we divide by Vi to obtain the implicit discretization of the finite volume method:1 + ∆tλ+ ∆t
∑
j∈Ni

Sij
∆xijVi

Dij

 ◦ σ∗i −∆t
∑
j∈Ni

Sij
∆xijVi

Dij ◦ σ∗j = ρni , (14)

which requires solution as a large but sparse linear system.

3.4.1 Locally-one dimensional (LOD) method for Cartesian meshes

Consider the special case of the domain Ω = [xL, xU ] × [yL, yU ] × [zL, zU ] with a regular Cartesian discretization
with x, y, and z step sizes given by ∆x, ∆y, and ∆z, respectively, with Nx x-nodes, Ny y-nodes, and Nz z-nodes.
Then for each (i, j, k) ∈ [0, Nx − 1]× [0, Ny − 1]× [0, Nz − 1], the voxels are defined by

m(i, j, k) = i+ jNx + kNxNy, (15)

xm = xm(i,j,k) = xi,j,k = [xi, yj , zk] (16)

Ωm = Ωm(i,j,k) = Ωi,j,k = xm +

[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
×
[
−∆z

2
,
∆z

2

]
. (17)
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Notice then that Vm = ∆x∆y∆z for all m, and

Sm,m±1 = ∆y∆z ∆xm,m±1 = ∆x (18)

Sm,m±Nx = ∆x∆z ∆xm,m±Nx = ∆y (19)

Sm,m±NxNy = ∆x∆y ∆xm,m±NxNy = ∆z. (20)

For this mesh structuring, we can use the locally one-dimensional (LOD) method to obtain fast and accurate
solutions [24, 15]. This method (like the related alternating directions implicit (ADI) method) splits a higher-
dimensional PDE into a series of related one-dimensional PDEs to be solved with fast matrix solvers. We do this
by splitting the operator in Eqn. 10 as

η − ρn

∆t
= ∂x (D ◦ ∂xη)− 1

3
λ ◦ η (21)

η∗ − η
∆t

= ∂y (D ◦ ∂yη∗)−
1

3
λ ◦ η∗ (22)

σ − η∗

∆t
= ∂z (D ◦ ∂zσ)− 1

3
λ ◦ σ (23)

Applying the finite volume method from Eqn. 14 to Eqn. 21 and setting D constant, for each voxel i we have:(
1 +

1

3
∆tλ+

∆t#Ni

∆x2
D

)
◦ ηi −

∑
j∈Ni

∆t

∆x2
D ◦ ηj = ρni . (24)

For any fixed 0 ≤ j < Ny and 0 ≤ k < Nz, and over the range 0 ≤ i < Nx (that is, for m from mL = m(0, j, k) to
mU = m(Nx − 1, j, k), we obtain the tridiagonal vector system:(

1 +
1

3
∆tλ+

∆t

∆x2
D

)
◦ ηmL −

∆t

∆x2
D ◦ ηmL+1 = ρnmL (25)

− ∆t

∆x2
D ◦ ηm−1 +

(
1 +

1

3
∆tλ+ 2

∆t

∆x2
D

)
◦ ηm −

∆t

∆x2
D ◦ ηm+1 = ρnm mL < m < mU (26)

− ∆t

∆x2
D ◦ ηmU−1 +

(
1 +

1

3
∆tλ+

∆t

∆x2
D

)
◦ ηmU = ρnmU (27)

This tridiagonal linear system that can be solved efficiently and directly by the Thomas algorithm (applied vecto-
rially) [21]. Similar calculations in the y− and z− directions (Equations 22-23) give additional tridiagonal linear
systems to solve. Thus, our overall algorithm for the diffusion-decay equation is:

1. x-diffusion: For each 0 ≤ j < Ny and each 0 ≤ k < Nz, solve the tridiagonal system (Equations 25-27)
along the strip 0 ≤ i < Nx (m(0, j, k) = mL ≤ m ≤ mU = m(Nx − 1, j, k)). Solving along each strip is a
serial operation, but the iteration across strips can be parallelized with OpenMP (a bundle of independent,
simultaneous Thomas solvers). In practice, the updated solutions (η) can overwrite the previous solutions
(ρn), thus reducing memory allocation and copy costs.

2. y-diffusion: For each 0 ≤ i < Nx and each 0 ≤ k < Nz, solve the analogous tridiagonal system along
the strip 0 ≤ j < Ny. Each strip can be solved with a separate Thomas solver, and thus parallelized with
OpenMP as in x-diffusion. In practice, the updated solutions (η∗) can overwrite the previous solutions (η),
thus reducing memory allocation and copy costs.

3. z-diffusion: For each 0 ≤ i < Nx and each 0 ≤ j < Ny, solve the analogous tridiagonal system along
the strip 0 ≤ z < Nz. Each strip can be solved with a separate Thomas solver, and thus parallelized with
OpenMP as in x-diffusion. In practice, the updated solutions (σ) can overwrite the previous solutions (η∗),
thus reducing memory allocation and copy costs.

Thus, Cartesian meshes with an additional locally one-dimensional (LOD) operator splitting allows us the stability
of an implicit scheme without the difficulty of solving large linear systems; instead we directly solve simple
tridiagonal systems. Morever, this formulation allows us to readily apply OpenMP to parallelize the code (by
using independent Thomas solvers for each “strip”).
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3.4.2 Accelerations

To further accelerate the algorithm, we apply the Thomas solvers to the entire vector of substrates simultaneously,
taking advantage of SIMD (single inststruction multiple data) optimizations on modern CPUs. Similarly, we use
operator overloading (e.g., operator+=) on the vectors of substrates and vectors of coefficients to minimize the
use of hidden, temporary variables that incur substantial memory allocation, copy, and dealloation costs. (For
instance, x = x + y temporarily allocates memory for hidden variable z, stores the result of x + y in z, copies
the result back onto x, and then de-allocates z. Using x += y eliminates these costs by directly overwriting each
component xi with xi + yi.)

We optimized custom level 1 BLAS “axpy” operators (y = a ◦ x + y and y = ax + y) to streamline common
operations in the Thomas and other solvers, without requiring an entire library for these simple instructions. We
implemented a specialized vectorized Thomas solver tailored to the diffusion-decay system using these overloaded
and axpy instructions, with further optimizations by pre-computing the forward sweeps and storing them for the
x-, y-, and z- diffusion operators. Note that separating diffusion and decay terms from the overall PDE makes this
optimization possible, as D and λ do not change from iteration to iteration, but the supply and uptake terms do.

3.5 Cell supply/uptake solver

In the first release of the solver, we approximate the cell supply/uptake term by “concentrating” it to a single
voxel with a Dirac delta function. For each cell k, let ik be the index of the voxel containing the cell center xk;
i.e., xk ∈ Ωik . Then we approximate Eqn. 12 by

ρn+1 − σ∗

∆t
=
∑
k

Wkδ (x− xk)
[
Sk ◦

(
ρ∗k − ρn+1

)
−Uk ◦ ρn+1)

]
, (28)

where δ (x) is the Dirac delta function, which we approximate by

δ (x− xk) ≈

{
1
Vik

if x ∈ Ωik

0 elsewhere.
(29)

To solve this, we iterate over all cells k with:

ρn+1
ik

=

(
σ∗ik + ∆t

Wk

Vik
Sk ◦ ρ∗k

)
(
(

1 + ∆t
Wk

Vik

(
Sk + Uk

))
(30)

These operations can be safely parallelized across the processor cores by OpenMP.
Note that this discretization can be less accurate for cells that are the same size of typical computational voxel

or larger. In this case, accuracy can be improved by either (1) “rasterizing” the cell-based supply and uptake onto
individual voxels, effectively by calculating the intersection of each cell’s volume on each voxel, or (2) sub-dividing
the cell into smaller “subcells” and computing their contribution to transport directly, using the same algorithm
as in Eqn. 30. We plan to add this capability in future releases.

3.6 Approximating Dirichlet conditions on selected voxels

To approximate Dirichlet conditions on one or more selected voxels, the code can overwrite the data stored in
any voxel with a prescribed vector of values. The code performs this step after each operator of of the LOD
algorithm (i.e., after x-diffusion, after y-diffusion, and after z-diffusion; see Section 3.4.1 above). However, to
improve accuracy, we would need to modify the computational stencil of the diffusion operator anywhere a specified
Dirichlet node appears. For the LOD algorithm, this would require individual Thomas solvers for each x-strip,
for each y-strip, and each z-strip. We defer this development until a later release, which will also facilitate a
discretization of ∇ · (D ◦ ∇ρ) rather than D ◦ ∇2ρ.
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4 Convergence testing

4.1 Example 1: 1-D diffusion (with analytical solution)

We first test the convergence of the diffusion-decay solver against a 1-D problem with a known analytical solution:

∂ρ

∂t
= D∂2

xρ − L0 < x < L0, t > 0 (31)

∂ρ

∂x
(x, t) = 0 x ∈ {−L0, L0} , t > 0 (32)

ρ(x, 0) = 1 + cos

(
π

L0
x

)
− L0 ≤ x ≤ L0, (33)

with exact solution

ρ(x, t) = 1 + e−βt cos

(
π

L0
x

)
, where β =

π2D

L2
0

, (34)

and where we used L0 = 500µm and D = 105µm2/min (D = 1.75×10−5cm2/sec = 1.05×105µm2/min for oxygen
in tissues as measured in [8]). The solution is plotted for several times in Fig. 2. The source code for this problem
can be found in the examples directory of any BioFVM download (file: convergence test1.cpp).
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t = 3.0
t = 4.0
t = 5.0

Figure 2) Solution for Example 1 (Section 4.1), plotted at t = 0.5, 1, 2, 3, 4, 5 minutes.

4.1.1 Convergence in time

Let ρ∆t,∆x denote the numerical solution simulated with time step size ∆t and spatial step size ∆x. For any given
norm ||·||, the error for the algorithm should take the form

Err(∆t,∆x) = ||ρ(x, t)− ρ∆t,∆x(x, t)|| ∼ A∆tm +B∆xn. (35)

To test for the convergence in ∆t, we must choose ∆x sufficiently small that B∆xn � A∆tm. In this case,

Err ∼ A∆tm =⇒ log(Err) ∼ log(A) +m log(∆t). (36)

Thus, we calculate the order of convergence as the slope of the linear least squares fit of log(Err) versus log(∆t). We
use the `∞ norm (the maximum absolute error over all voxels). We perform convergence testing with ∆x = 5 µm,
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with ∆t ∈
{

10−5, 10−4, 10−3, 10−2, 10−1, 1
}

min. The error values are plotted in Fig. 3 (left) and recorded in
Table 2. In this example, we see first-order convergence in time at several solution times (showing good accuracy
on both short and long time scales), and stability even for ∆t much larger than the CFL condition for explicit
discretizations (on the order of ∆tCFL ∼ 10−4 min). Note that the for any fixed ∆t, the errors decrease over time;
this shows that the solutions demonstrate better accuracy as solutions approach steady state.

The errors show evidence of saturating for very small ∆t, where the error from the spatial discretization is
likely to dominate, and so B∆xn � A∆tm no longer holds for the convergence calculation. The error for ∆t = 1
min (an unlikely choice of time step size in most applications) is comparatively large, giving a large drop in error
between ∆t = 1 min and ∆t = 0.1 min; this large drop may unduly increase the computed convergence rate.
For these reasons, we also calculated the convergence rate based upon the data for 10−4 ≤ ∆t ≤ 10−1; see the
rightmost column in Table 2.
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Figure 3) Left: Convergence in ∆t for Example 1 (Section 4.1), with ∆x = 5 µm. Each curve gives the error across ∆t at a
different time (from top to bottom: t=0.5, 1, 2, 3, 4, and 5 minutes). Notice that for each fixed resolution ∆t, the error improves
in time as the solution approaches steady state. The linear least-squares fits are plotted for 10−4 ≤ ∆t ≤ 10−1; the slope of each
line gives the order of convergence at that time; see Table 2.
Right: Convergence in ∆x for Example 1 (Section 4.1), with ∆t = 10−5 min. Each curve gives the error across ∆x at a different
time (from top to bottom: t=0.5, 1, 2, 3, 4, and 5 minutes). Notice that for each fixed resolution ∆x, the error improves in time
as the solution approaches steady state. The slope of each linear least squares fit (black curves) gives the order of convergence at
that time; see Table 3.

Table 2: Convergence in ∆t for Example 1 (Section 4.1), with ∆x = 5 µm. At each time, we observe first-order convergence.
The solutions are stable even for large ∆t, whereas the CFL condition for explicit solvers is ∆t < 1.25 × 10−4 min.
∗As we cannot compute ρ1 min,5 µm(0.5 min), we used the data for 10−5 ≤ ∆t ≤ 10−1 to compute the order of convergence at 0.5 min.
∗∗At each time, the error approaches a saturating value when the spatial discretization errors begin to dominate (below
∼ ∆t = 10−4). Moreover, the large errors for ∆t = 1 min (a step size we would not anticipate using) artificially increase the order of
convergence. Thus, we also computed the the order of convergence based on the data for 10−4 ≤ ∆t ≤ 10−1.

Time Err(∆t, 5 µm), where ∆t is:
(min) 1 min 0.1 min 10−2 min 10−3 min 10−4 min 10−5 min order order∗∗

0.5 n.a.∗ 5.0542e-02 5.3974e-03 5.6336e-04 2.1800e-05 2.8000e-05 0.89∗ 1.11
1 1.8280e-01 6.4385e-03 1.5287e-03 1.5683e-04 1.3700e-05 7.0100e-06 0.88 0.90
2 4.0476e-02 9.1597e-04 6.1300e-05 4.5900e-06 6.7500e-07 3.0000e-07 1.03 1.05
3 8.2491e-03 3.9100e-05 1.5000e-06 1.4800e-07 2.3800e-08 8.6800e-09 1.16 1.07
4 1.6686e-03 1.5200e-06 4.2300e-08 4.0000e-09 6.1900e-10 2.2500e-10 1.30 1.12
5 3.3729e-04 4.0000e-08 1.0900e-09 1.1100e-10 2.1900e-11 7.4700e-12 1.40 1.08

mean 1.11 1.06
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4.1.2 Convergence in space

To ensure that A∆tm � B∆xm in Eqn. 35, we use ∆t = 10−5 min. Similarly to before,

log(Err) ∼ log(B) + n log(∆x). (37)

and the order of convergence can be calculated as the slope of the linear least squares fit of log(Err) versus log(∆x).
The errors are reported in Table 3 and plotted in Figure 3 (right). At all times, the solutions demonstrate
approximately second-order convergence. Moreover, for any fixed ∆x, the accuracy improves over time as the
solution approaches steady state.

Table 3: Convergence in ∆x for Example 1 (Section 4.1), with ∆t = 10−5 min. For all times, we observe approximately
second-order convergence.

Err(10−5 min,∆x)
Time (min) ∆x = 40µm ∆x = 20µm ∆x = 10µm ∆x = 5µm order

0.5 1.4530e-03 3.6600e-04 9.5600e-05 2.8000e-05 1.90
1 4.0500e-04 1.0100e-04 2.5800e-05 7.0100e-06 1.95
2 1.5800e-05 3.9400e-06 1.0300e-06 3.0000e-07 1.91
3 4.6300e-07 1.1400e-07 2.9700e-08 8.6800e-09 1.92
4 1.2000e-08 3.0300e-09 7.9300e-10 2.2500e-10 1.91
5 3.9800e-10 1.7000e-10 5.3000e-11 7.4700e-12 1.89

mean 1.91

4.1.3 Selecting ∆t for reasonable accuracy at ∆x = 20µm resolution

After investigating convergence in ∆t and ∆x, we also examined the relative accuracy (max |ρ∆t,∆x − ρ| / |ρ|)
of solutions at ∆x = 20 µm (a typical spatial resolution for large multicellular systems problems in cancer and
tissue engineering) at a variety of time step sizes. In Fig. 4 and Table 4, we see for the solutions are stable
for all tested time steps, and that for ∆t = 0.01 min, the relative error never exceeds approximately 0.5% at
any of the tested times; with ∆t = 0.1 min, the error remains below approximately 5% all tested times, and
below approximately 0.7% for all t ≥ 1 min (close to quasi-steady conditions that may be expected in many
cancer and tissue engineering problems). This means that for diffusion-decay problems with parameters of this
order of magnitude, we can use step sizes that are 10-100 times larger than the explicit CFL condition (1D:
(20 µm)2/(2× 105 µm2/min) ∼ 0.002 min) and still obtain reasonable accuracy, especially as systems approach a
quasi-steady state.

Table 4: Relative accuracy versus ∆t for ∆x = 20 µm in Example 1 (Section 4.1). At this spatial resolution, ∆t = 0.01 or
∆t = 0.1 min may be sufficient for many common problems.

time Relative Err(∆t, 20 µm), where ∆t is:
(min) 1 min 0.1 min 10−2 min 10−3 min 10−4 min 10−5 min

0.5 n.a. 0.058693982 0.004739153 0.000654229 1.92e-05 3.25e-05
1 0.186399099 0.006565157 0.001499716 0.000159917 1.34e-05 7.15e-06
2 0.040490869 0.000915632 6.13e-05 4.59e-06 6.75e-07 3.00e-07
3 0.008249157 3.91e-05 1.50e-06 1.48e-07 2.38e-08 8.68e-09
4 0.001668634 1.52e-06 4.23e-08 4.00e-09 6.19E-10 2.25E-10
5 0.000337292 4.00e-08 1.09e-09 1.11E-10 2.19E-11 7.47E-12

4.2 Example 2: 3-D diffusion-reaction with bulk sources

We next tested the convergence of the overall 3-D simulator, including “bulk sources”, using the problem

∂ρ

∂t
= D∇2ρ− λρ+ f(x) · (ρ∗ − ρ) x ∈ Ω (38)

D∇ρ · n = 0 x ∈ ∂Ω (39)
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Figure 4) Relative accuracy versus ∆t for ∆x = 20 µm in Example 1 (Section 4.1). At this spatial resolution, ∆t = 0.01 or
∆t = 0.1 min may be sufficient for many common problems.

where Ω = [−L0, L0]× [−L0, L0]× [−L0, L0] with L0 = 500 µm, and f is defined by

f(x) =

{
r if ||x| − L0| ≤ 40 µm or ||y| − L0| ≤ 40 µm or ||z| − L0| ≤ 40

0 elsewhere.
(40)

As in the prior example, we set D = 105 µm2/min, and we choose λ = 0.1 min−1 so that the diffusional length
scale L =

√
D/λ = 1000 µm in “background tissue” with no cell uptake sources (similarly to our work in [14]).

We set ρ∗ = 38 mmHg (corresponding to 5% oxygenation conditions, typical of physiologic conditions of 1-11%
oxygenation in tissue [1, 16]). We set a large value of r (for simplicity, r = 38 min−1) to simulate a very strong
source that maintains the nearest tissue close to ρ∗. A typical solution (∆x = 10µm, ∆t = 10−4 min) at t = 4 min
is plotted in Figure 5. The source code for this problem can be found in the examples directory of any BioFVM
download (file: convergence test2.cpp).

x (µm)

y 
(µ

m
)

 

 

−400 −300 −200 −100 0 100 200 300 400

−400

−300

−200

−100

0

100

200

300

400

O
xy

ge
na

tio
n 

(m
m

H
g)

35.8

36

36.2

36.4

36.6

36.8

37

37.2

37.4

37.6

500
300

100

x (µm)

-100
-300

-500-500

0

y (µm)

35.5

36

36.5

37

37.5

38

500

O
xy

ge
na

tio
n 

(m
m

H
g)

Figure 5) Solution for Example 2 (Section 4.2) after 4 minutes, computed with ∆x = 10 µm and ∆t = 10−4 min. left:
Contour plot through z = 5 µm. right: Surface plot through the same cross-section.
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4.2.1 Convergence in time

Unlike the previous example, we do not have an analytical solution. Following our prior work [11, 12, 13], we
define the numerical rate of convergence by first denoting

ρ∆t,∆x(x, t) = numerical solution at (x, t) obtained with ∆t and ∆x (41)

Err(∆t,∆x, t) = max
all voxels i

|ρ∗(xi, t)− ρ∆t,∆x(xi, t)| , (42)

where ρ(x, t) is an approximation to the true solution, typically computed with very fine ∆x and ∆t. Here we use
ρ = ρ10−4,10 (∆t in units of minutes, and ∆x in units of µm); that is, at each time t, we compare the simulated
solution at larger time step sizes ∆t to the simulated solution at the finest time step size to estimate the errors at
each time. With these definitions, we calculate the numerical order of convergence by

order =
log
(

Err(∆t1,10)
Err(∆t2,10)

)
log
(

∆t1
∆t2

) (43)

The convergence results are stated in Table 5 (left) and plotted in Fig. 6 (left). First-order convergence is observed
at all computed times.
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Figure 6) Convergence for Example 2 (Section 4.2).
Left: Convergence in ∆t, with ∆x = 10 µm. Each curve gives the error across ∆t at a different time (from top to bottom: t=0.5,
1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 43. See Table 5.
Right: Convergence in ∆x, with ∆t = 10−4 min. Each curve gives the error across ∆x at a different time (from top to bottom:
t=0.5, 1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 46. See Table 5.

4.2.2 Convergence in space

To test convergence in space, we set ∆t = 10−4 min and simulated 4 minutes of diffusion at spatial resolutions
∆x = 10 µm (high or fine resolution), 20 µm (medium resolution), and 40 µm (low resolution). As before, we
will use ρ10−4,10 as an estimate of the exact solution. Because the voxel centers do not align for the simulated
spatial resolutions, we cannot simply compute the `∞ norm voxel by voxel as before. Instead, we define a norm
to help quantify the errors. First, noting that ρni is the simulated mean value of ρ in the ith voxel at resolution
∆x (hereafter denoted by Ω∆x

i ), we first coarse grain the solution on the finest mesh to the simulation resolution:

ρcoarse
∆t,∆x(xi, t) = mean

{
ρ∆t,10(xk, t) for k satisfying Ω10

k ⊂ Ω∆x
i

}
(44)

For ∆x = 20 µm, this average is computed over 8 voxels from the fine-grained mesh for each voxel in the medium
resolution mesh; for ∆x = 40 µm, the average is computed over 64 voxels from the fine-grained mesh for each
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Table 5: Convergence for Example 2 (Section 4.2).
Left: Convergence in ∆t, with ∆x = 10 µm. For all times, we observe approximately first-order convergence.

Right: Convergence in ∆x, with ∆t = 10−4 min. For all times, we observe approximately second-order convergence.

Time Err(∆t, 10 µm)
(min) ∆t = 10−2 min ∆t = 10−3 min order

0.5 1.3689e-01 1.3361e-02 1.01
1 1.8778e-01 1.7843e-02 1.02
2 2.1235e-01 1.9826e-02 1.03
3 2.1514e-01 2.0024e-02 1.03
4 2.1543e-01 2.0042e-02 1.03

mean 1.02

Time Err(10−4 min,∆x)
(min) ∆x = 40 µm ∆x = 20 µm order

0.5 3.3739e-02 7.2974e-03 2.21
1 4.8367e-02 1.0187e-02 2.25
2 5.5621e-02 1.1559e-02 2.27
3 5.6424e-02 1.1704e-02 2.27
4 5.6503e-02 1.1718e-02 2.27

mean 2.25

voxel in the low resolution mesh. With this coarse-grained projection of the fine solution on the medium- and
low-resolution meshes, we can define:

Errcoarse(∆t,∆x) =
∣∣∣∣ρ∆t,∆x − ρcoarse

∆t,∆x

∣∣∣∣
∞ (45)

We then compute the order of convergence via

order =
log
(

Errcoarse(∆t,40)
Errcoarse(∆t,20)

)
log
(

40
20

) (46)

The convergence results are stated in Table 5 (right) and plotted in Fig. 6 (right). Approximately second-order
convergence is observed at all computed times.

4.2.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution

As before, we next investigated the relative accuracy of solutions at ∆x = 20 µm at a variety of time step sizes.
In Fig. 7 and Table 6, we see for the solutions are stable for all tested time steps, and that for ∆t = 0.01
min, the relative error never exceeds 0.6% at any of the tested times, and with ∆t = 0.1 min, the error remains
below approximately 5% all tested times. This means that for diffusion-decay problems with parameters of this
order of magnitude, we can use step sizes that are 10-100 times larger than the explicit CFL condition (3D:
(20 µm)2/(2× 3× 105 µm2/min) ∼ 6.7× 10−4 min) and still obtain reasonable accuracy.

Table 6: Relative accuracy versus ∆t for ∆x = 20 µm in Example 2 (Section 4.2). At this spatial resolution, ∆t = 0.01 or
∆t = 0.1 min may be sufficient for many common problems.

time Relative Err(∆t, 20 µm), where ∆t is:
(min) 1 min 0.1 min 10−2 min 10−3 min

0.5 n.a. 0.02130426 0.003622101 0.000353547
1 0.08972731 0.034661628 0.004994918 0.000474698
2 0.148955005 0.045961999 0.005664208 0.00052887
3 0.195526889 0.048989694 0.00574096 0.000534346
4 0.230851486 0.049768124 0.005749059 0.000534856

mean 1.6627e-01 4.0137e-02 5.1542e-03 4.8526e-04

4.3 Example 3: 3-D diffusion-reaction with bulk sources, grid-aligned cell uptake

Next, we added grid-aligned cells to uptake substrate, as would be expected in cellular automata and cellular potts
methods. The modified problem took the form

∂ρ

∂t
= D∇2ρ− λρ+ f(x) · (ρ∗ − ρ)−

∑
k

1k(x)Ukρ x ∈ Ω (47)

D∇ρ · n = 0 x ∈ ∂Ω (48)
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Figure 7) Relative accuracy versus ∆t for ∆x = 20 µm in Example 2 (Section 4.2). At this spatial resolution, ∆t = 0.01 or
∆t = 0.1 min may be sufficient for many common problems.

where Ω = [−L0, L0]× [−L0, L0]× [−L0, L0] with L0 = 500 µm, and f is defined by

f(x) =

{
r if ||x| − L0| ≤ 40 µm or ||y| − L0| ≤ 40 µm or ||z| − L0| ≤ 40

0 elsewhere.
(49)

All parameters are as in Example 4.2, and we set Wk = 103µm3 and Uk = 10 min−1 for each cell, so that the

diffusion length scale satisifes L =
√
D/Uk = 100 µm in areas densely filled with cells [14]. The cells were

introduced to fill a spherical tumor focus centered at (0, 0, 0) with radius 400 µm. That is, we introduced all cells
that satisfied

xn = (xin , yjn , zkn) with ||xn|| ≤ 400 µm (50)

and where xin , yjn , zkn ∈ {−495,−485, ..., 485, 495} µm. (That is, the cells are centered at voxel centers at 10 µm
resolution.) A typical solution (∆x = 10µm, ∆t = 10−4 min) at t = 4 min is plotted in Figure 8. The source code
for this problem can be found in the examples directory of any BioFVM download (file: convergence test3.cpp).
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Figure 8) Solution for Example 3 (Section 4.3) after 4 minutes, computed with ∆x = 10 µm and ∆t = 10−4 min. left:
Contour plot through z = 5 µm. right: Surface plot through the same cross-section.
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4.3.1 Convergence in time

We calculated the convergence rate in time as defined in Section 4.2.1, using ∆x = 10 µm and ∆t = 10−4 min to
calculate ρ. The convergence results are stated in Table 7 (left) and plotted in Fig. 9 (left). First-order convergence
is observed at all computed times.
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Figure 9) Convergence for Example 3 (Section 4.3).
Left: Convergence in ∆t, with ∆x = 10 µm. Each curve gives the error across ∆t at a different time (from top to bottom: t=0.5,
1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 43. See Table 7.
Right: Convergence in ∆x, with ∆t = 10−4 min. Each curve gives the error across ∆x at a different time (from top to bottom:
t=0.5, 1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 46. See Table 7.

Table 7: Convergence for Example 3 (Section 4.3).
Left: Convergence in ∆t, with ∆x = 10 µm. For all times, we observe approximately first-order convergence.

Right: Convergence in ∆x, with ∆t = 10−4 min. For all times, we observe approximately second-order convergence.

Time Err(∆t, 10 µm)
(min) ∆t = 10−2 min ∆t = 10−3 min order

0.5 1.150889467 0.106925713 1.03
1 1.053258117 0.097784284 1.03
2 0.987859439 0.092132075 1.03
3 0.981200055 0.091633895 1.03
4 0.980696623 0.091601635 1.03

mean 1.03

Time Err(10−4 min,∆x)
(min) ∆x = 40 µm ∆x = 20 µm order

0.5 2.3949e-01 6.1133e-02 1.97
1 2.6043e-01 6.5372e-02 1.99
2 2.7586e-01 6.8652e-02 2.01
3 2.7777e-01 6.8959e-02 2.01
4 2.7807e-01 6.8979e-02 2.01

mean 2.00

4.3.2 Convergence in space

To test convergence in space, we set ∆t = 10−4 min and simulated 4 minutes of diffusion at spatial resolutions
∆x = 10µm (high or fine resolution), 20µm (medium resolution), and 40µm (low resolution). As before, we will use
ρ10−4,10 as an estimate of the exact solution, with the errors and order of convergence defined as in Section 4.2.2.
The convergence results are stated in Table 7 (right) and plotted in Fig. 9 (right). Approximately second-order
convergence is observed at all computed times.

4.3.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution

As before, we next investigated the relative accuracy of solutions at ∆x = 20 µm at a variety of time step sizes.
In Fig. 10 and Table 8, we see for the solutions are stable for all tested time steps, and that for ∆t = 0.01 min,
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the relative error never exceeds 4% at any of the tested times. This means that for diffusion-decay problems with
parameters of this order of magnitude, we can use step sizes that are ∼ 10 times larger than the explicit CFL
condition (3D: (20 µm)2/(2× 3× 105 µm2/min) ∼ 6.7× 10−4 min) and still obtain reasonable accuracy.
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Figure 10) Relative accuracy versus ∆t for ∆x = 20 µm in Example 3 (Section 4.3). At this spatial resolution, ∆t = 0.01 or
∆t = 0.1 min may be sufficient for many common problems.

Table 8: Relative accuracy versus ∆t for ∆x = 20 µm in Example 3 (Section 4.3). At this spatial resolution, ∆t = 0.01 or
∆t = 0.1 min may be sufficient for many common problems.

time Relative Err(∆t, 20 µm), where ∆t is:
(min) 1 min 0.1 min 10−2 min 10−3 min

0.5 n.a. 0.476524012 0.037360947 0.00330152
1 0.929100792 0.458497393 0.036475153 0.003209583
2 0.773244293 0.418323023 0.033328745 0.00298451
3 0.64869279 0.406707729 0.032957057 0.002944096
4 0.55996833 0.404075957 0.032929183 0.00294212

mean 0.72 0.433 0.0346 0.00308

4.4 Example 4: 3-D diffusion-reaction with bulk sources, off-lattice cell uptake

Next, we tested off-lattice cells to uptake substrate, as would be expected in cell-centered agent-based models.
The modified problem took the form

∂ρ

∂t
= D∇2ρ− λρ+ f(x) · (ρ∗ − ρ)−

∑
k

1k(x)Ukρ x ∈ Ω (51)

D∇ρ · n = 0 x ∈ ∂Ω (52)

where Ω = [−L0, L0]× [−L0, L0]× [−L0, L0] with L0 = 500 µm, and f is defined by

f(x) =

{
r if ||x| − L0| ≤ 40 µm or ||y| − L0| ≤ 40 µm or ||z| − L0| ≤ 40

0 elsewhere.
(53)

All parameters are as in Example 4.2. 417,000 cells with radius 5 µm (volume: Wk = 4
3π53 µm3) were introduced

with a hexagonal arrangement to fill the same spherical tumor focus centered at (0, 0, 0) with radius 400 µm. See
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the source code for further details on this cell packing. Each cell had the same uptake rate as in Example 3 (Section
4.3). A typical solution (∆x = 10 µm, ∆t = 10−4 min) at t = 4 min is plotted in Figure 11. The source code for
this problem can be found in the examples directory of any BioFVM download (file: convergence test4.cpp).
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Figure 11) Solution for Example 4 (Section 4.4) after 4 minutes, computed with ∆x = 10 µm and ∆t = 10−4 min. left:
Contour plot through z = 5 µm. right: Surface plot through the same cross-section.

4.4.1 Convergence in time

We calculated the convergence rate in time as defined in Section 4.2.1, using ∆x = 10 µm and ∆t = 10−4 min
to calculate ρ. The convergence results are stated in Table 9 (left) and plotted in Fig. 12 (left). First-order
convergence is observed at all computed times.
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Figure 12) Left: Convergence in ∆t for Example 4 (Section 4.4), with ∆x = 10 µm. Each curve gives the error across ∆t at a
different time (from top to bottom: t=0.5, 1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 43. See Table
9.
Right: Convergence in ∆x for Example 4 (Section 4.4), with ∆t = 10−4 min. Each curve gives the error across ∆x at a different
time (from top to bottom: t=0.5, 1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 46. See Table 9.

4.4.2 Convergence in space

To test convergence in space, we set ∆t = 10−4 min and simulated 4 minutes of diffusion at spatial resolutions
∆x = 10µm (high or fine resolution), 20µm (medium resolution), and 40µm (low resolution). As before, we will use
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Table 9: Convergence for Example 4 (Section 4.4).
Left: Convergence in ∆t, with ∆x = 10 µm. For all times, we observe approximately first-order convergence.

Right: Convergence in ∆x, with ∆t = 10−4 min. For all times, we observe approximately second-order convergence.

Time Err(∆t, 10 µm)
(min) ∆t = 10−2 min ∆t = 10−3 min order

0.5 1.472985091 0.150945545 0.989378051
1 1.643977639 0.165465049 0.997189635
2 1.659215736 0.1665307 0.998408552
3 1.659289769 0.166535021 0.998416659
4 1.659289104 0.166534098 0.998418892

mean 0.996362358

Time Err(10−4 min,∆x)
(min) ∆x = 40 µm ∆x = 20 µm order

0.5 4.5359e-01 1.1975e-01 1.92
1 5.0324e-01 1.2798e-01 1.98
2 5.0722e-01 1.2873e-01 1.98
3 5.0724e-01 1.2873e-01 1.98
4 5.0723e-01 1.2873e-01 1.98

mean 1.97

ρ10−4,10 as an estimate of the exact solution, with the errors and order of convergence defined as in Section 4.2.2.
The convergence results are stated in Table 9 (right) and plotted in Fig. 12 (right). Approximately second-order
convergence is observed at all computed times.

4.4.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution

As before, we next investigated the relative accuracy of solutions at ∆x = 20 µm at a variety of time step sizes.
In Fig. 13 and Table 10, we see for the solutions are stable for all tested time steps, and that for ∆t = 0.01 min,
the relative error never exceeds ∼ 5% at any of the tested times. This means that for diffusion-decay problems
with parameters of this order of magnitude, we can use step sizes that are approximately 15 times larger than
the explicit CFL condition (3D: (20 µm)2/(2 × 3 × 105 µm2/min) ∼ 6.7 × 10−4 min) and still obtain reasonable
accuracy.
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Figure 13) Relative accuracy versus ∆t for ∆x = 20 µm in Example 4 (Section 4.4). At this spatial resolution, ∆t = 0.01 min
may be sufficient for many common problems.
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Table 10: Relative accuracy versus ∆t for ∆x = 20 µm in Example 4 (Section 4.4). At this spatial resolution, ∆t = 0.01 min
may be sufficient for many common problems.

time Relative Err(∆t, 20 µm), where ∆t is:
(min) 1 min 0.1 min 10−2 min 10−3 min

0.5 n.a. 0.195251358 0.046145886 0.004730137
1 2.608209824 0.257376363 0.051954152 0.005230567
2 0.375719263 0.274877019 0.052455745 0.005266263
3 0.451076525 0.275756818 0.05245812 0.005266404
4 0.489548456 0.27580093 0.052458101 0.005266375

mean 0.981138517 0.255812498 0.051094401 0.005151949

4.5 Example 5: 3-D diffusion-reaction with bulk sources, off-lattice cell uptake and supply

Next, we tested off-lattice cells to uptake substrate, as would be expected in cell-centered agent-based models.
The modified problem took the form

∂ρ

∂t
= D∇2ρ− λρ+ f(x) · (ρ∗ − ρ)−

∑
k∈K1

1k(x)Ukρ+
∑
k∈K2

1k(x)Sk (ρ∗k − ρ) x ∈ Ω (54)

D∇ρ · n = 0 x ∈ ∂Ω (55)

where Ω = [−L0, L0]× [−L0, L0]× [−L0, L0] with L0 = 500 µm, and f is defined by

f(x) =

{
r if ||x| − L0| ≤ 40 µm or ||y| − L0| ≤ 40 µm or ||z| − L0| ≤ 40

0 elsewhere.
(56)

All parameters are as in Example 4.2. K1 is the set of 417,000 cells uptaking ρ within the 400 µm tumor
focus introduced in Example 4 (Section 4.4), and K2 is a set of 200 randomly-placed cell-centered sources, with
Sk = 10 min−1, ρ∗ = 38 mmHg, and same size as in Example 4. A typical solution (∆x = 10µm, ∆t = 10−4 min)
at t = 4 min is plotted in Figure 14. The source code for this problem can be found in the examples directory of
any BioFVM download (file: convergence test5.cpp).
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Figure 14) Solution for Example 5 (Section 4.5) after 4 minutes, computed with ∆x = 10 µm and ∆t = 10−4 min. left:
Contour plot through z = 5 µm. right: Surface plot through the same cross-section.

4.5.1 Convergence in time

We calculated the convergence rate in time as defined in Section 4.2.1, using ∆x = 10 µm and ∆t = 10−4 min
to calculate ρ. The convergence results are stated in Table 11 (left) and plotted in Fig. 15 (left). First-order
convergence is observed at all computed times.
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Figure 15) Left: Convergence in ∆t for Example 5 (Section 4.5), with ∆x = 10 µm. Each curve gives the error across ∆t at a
different time (from top to bottom: t=0.5, 1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 43. See Table
11.
Right: Convergence in ∆x for Example 4 (Section 4.5), with ∆t = 10−4 min. Each curve gives the error across ∆x at a different
time (from top to bottom: t=0.5, 1, 2, 3, and 4 minutes). The convergence rates are computed as in Eqn. 46. See Table 11.

Table 11: Convergence for Example 5 (Section 4.5).
Left: Convergence in ∆t, with ∆x = 10 µm. For all times, we observe approximately first-order convergence.

Right: Convergence in ∆x, with ∆t = 10−4 min. For all times, we observe approximately second-order convergence.

Time Err(∆t, 10 µm)
(min) ∆t = 10−2 min ∆t = 10−3 min order

0.5 1.46213217 0.149817435 0.989
1 1.628579376 0.163924374 0.997
2 1.643088104 0.164951938 0.998
3 1.643134677 0.164970988 0.998
4 1.643229553 0.164945039 0.998

mean 0.996303533

Time Err(10−4 min,∆x)
(min) ∆x = 40 µm ∆x = 20 µm order

0.5 4.4926e-01 1.1934e-01 1.91
1 4.9747e-01 1.2737e-01 1.97
2 5.0128e-01 1.2803e-01 1.97
3 5.0130e-01 1.2811e-01 1.97
4 5.0129e-01 1.2812e-01 1.97

mean 1.96

4.5.2 Convergence in space

To test convergence in space, we set ∆t = 10−4 min and simulated 4 minutes of diffusion at spatial resolutions
∆x = 10 µm (high or fine resolution), 20 µm (medium resolution), and 40 µm (low resolution). As before, we will
use ρ10−4,10 as an estimate of the exact solution, with the errors and order of convergence defined as in Section
4.2.2. The convergence results are stated in Table 11 (right) and plotted in Fig. 15 (right). Approximately
second-order convergence is observed at all computed times.

4.5.3 Selecting ∆t for reasonable accuracy at ∆x = 20 µm resolution

As before, we next investigated the relative accuracy of solutions at ∆x = 20 µm at a variety of time step sizes.
In Fig. 16 and Table 12, we see for the solutions are stable for all tested time steps, and that for ∆t = 0.01 min,
the relative error never exceeds ∼ 5% at any of the tested times. This means that for diffusion-decay problems
with parameters of this order of magnitude, we can use step sizes that are approximately 15 times larger than
the explicit CFL condition (3D: (20 µm)2/(2 × 3 × 105 µm2/min) ∼ 6.7 × 10−4 min) and still obtain reasonable
accuracy.
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Figure 16) Relative accuracy versus ∆t for ∆x = 20 µm in Example 5 (Section 4.5). At this spatial resolution, ∆t = 0.01 min
may be sufficient for many common problems.

Table 12: Relative accuracy versus ∆t for ∆x = 20 µm in Example 4 (Section 4.4). At this spatial resolution, ∆t = 0.01 min
may be sufficient for many common problems.

time Relative Err(∆t, 20 µm), where ∆t is:
(min) 1 min 0.1 min 10−2 min 10−3 min

0.5 n.a. 0.194368401 0.045734272 0.004687355
1 2.59024396 0.255074619 0.051374281 0.00517237
2 0.374705709 0.271920769 0.051850793 0.005206683
3 0.448872584 0.272663193 0.05185227 0.005207285
4 0.486527376 0.272744359 0.051855273 0.005206467

mean 0.975087407 0.253354268 0.050533378 0.005096032

5 Performance testing

We tested the performance and scalability of BioFVM with respect to the number of simulated substrates (Sec.
5.1), the number of voxels (scales with the simulated domain size and/or the spatial resolutions; Sec. 5.2), and the
number of cells releasing and/or consuming substrates (Sec. 5.3). The computational cost (measured as total wall
time for a fixed problem) was found to scale linearly with each of these. All tests were performed on a desktop
workstation with a quad-core Intel i7-4790 processor (3.60 GHz) and 16 GB of memory, using MinGW-W64 (gcc
version 4.9.1) on Windows 7. We used the compiler flags:

-march=core-avx2 -O3 -s -fomit-frame-pointer -mfpmath=both -fopenmp -m64 -std=c++11

5.1 Performance scaling with number of substrates

We first tested the computational impact of increasing the number of simulated substrates, by solving

∂ρ

∂t
= D ◦ ∇2ρ− λ ◦ ρ+ f in Ω (57)

∂ρ

∂n
= 0 on ∂Ω, (58)

for 2 simulated minutes (∆t = 0.01 min) on the 1 mm3 domain (∆x = 10µm, giving 1 million computational voxel)
from Example 2 (Section 4.2), with N ∈ {1, 2, 4, 8, 16, 32, 64, 128} simulated substrates. We set λi = 0.1 min−1

for each i, we used the same source f as in Section 4.2, and we randomly chose Di ∼ 105 mm2/min for each i.
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See Fig. 17. The computational cost–the wall time for the 2 minute diffusion simulation–scaled linearly with the
number of simulated substrates (N), with linear least squares fit given by

Time (sec) ≈ 5.4704 + 1.1620Nsubstrates. (59)

Increasing from 1 substrate to 10 substrates increases computational time a factor of approximately 2.6. The
source code for this problem can be found in the examples directory of any BioFVM download (file:
performance test substrates.cpp).

Notice that this says that approximately 8-9 minutes would be required to simulate 1 hour of
diffusion by 10 substrates on a 1-million voxel mesh, and 3-4 minutes to simulate a single substrate.
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Figure 17) Computational cost scales linearly with the number of simulated substrates (Section 5.1). Left: Time to simulate 2
minutes of diffusion for N substrates, with 1 million voxels and ∆t = 0.01 min. Middle: Plot of the computation times (red
circles) and the linear least squares fit (black line). Right: Plot of the computation times (red circles) and the linear least squares
fit (black curve), logarithmic scale.

5.2 Performance scaling with number of voxels

We next tested the computational impact of increasing the number of voxels, by solving Eqn. 57 for 2 simulated
minutes (∆t = 0.01 min) on increasingly large domains (from 8,000 to over 4 million voxels) with ∆x fixed at 10
µm; D and λ were as in the previous test, and f was changed to a bulk source throughout the region

f =

{
1 if |x| < 5 or |y| < 5 or |z| < 5
0 otherwise.

(60)

See Fig. 18. The computational cost scaled linearly with the number of voxels, with linear least squares fit

Time (sec) ≈ 0.05727 + 6.2× 10−6Nvoxels. (61)

Notice that using ∆t = 0.1 min would decrease these computational times by a factor of 10. The source code for this
problem can be found in the examples directory of any BioFVM download (file: performance test voxels.cpp).

5.3 Performance scaling with number of cells (uptake/source terms)

We next tested the computational impact of increasing the number of cells, by solving Eqn. 57 for 2 simulated
minutes (∆t = 0.01 min) on the same domain as before, but at a resolution of ∆x = 20 µm (125,000 voxels)
tailored to the 20-µm diameter cell size. We simulated an increasing number of cells (1,000 to over 4 million); D,
λ and f were as in the previous tests. See Fig. 19. The computational cost scaled linearly with the number of
voxels, with linear least squares fit given by

Time (sec) ≈ 1.15 + 4.1× 10−6Ncells. (62)
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Figure 18) Computational cost scales linearly with the number of simulated voxels (Section 5.1). Left: Time to simulate 2 minutes
of diffusion for N voxels, with 1 substrate and ∆t = 0.01 min. Middle: Plot of the computation times (red circles) and the linear
least squares fit (black line). Right: Plot of the computation times (red circles) and the linear least squares fit (black curve),
logarithmic scale.

A closer examination of Fig. 19 shows that the cells’ contribution to the overall computational cost was negligible
through approximately 100,000 to 150,000 cells. Notice that using ∆t = 0.1 min would decrease these computa-
tional times by a factor of 10. The source code for this problem can be found in the examples directory of any
BioFVM download (file: performance test numcells.cpp).
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Figure 19) Computational cost scales linearly with the number of simulated cells (Section 5.3). Left: Time to simulate 2 minutes of
diffusion for N cells, with 1 substrate, 1 million voxels, and ∆t = 0.01 min. Middle: Plot of the computation times (red circles)
and the linear least squares fit (black line). Right: Plot of the computation times (red circles) and the linear least squares fit
(black curve), logarithmic scale.
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