Electronic Supplementary Information (ESM)

Evolutionary genetics of hypoxia tolerance in cetaceans during diving

Ran Tian, Zhengfei Wang, Xu Niu, Kaiya Zhou, Shixia Xu^{*}, Guang Yang^{*} Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing

Normal University, Nanjing 210023, China

Table S1 The 17 candidate genes and their protein products

Gene	Ensembl ID	Protein	UniProtKB/Swiss-Prot Summary of	GeneCard Summary of Disorders /	Sources	Amino	
		Product	Gene Function	Diseases	of 3D	Acid	
					Structure	Length	
HBA	ENSG00000188536	Hemoglobin	Involved in oxygen transport from the	Alpha-thalassemia, beta-thalassemia,	PDB: 1SI4	141	
		alpha	lung to the various peripheral tissues.	thalassemia, hemoglobinopathies, h disease			
HBB	ENSG00000244734	Hemoglobin	Involved in oxygen transport from the	Beta-thalassemia, thalassemia,	PDB:	146	
		beta	lung to the various peripheral tissues.	hemoglobinopathies, intermedia thalassemia, erythroleukemia	1HHO		
MB	ENSG00000198125	Myoglobin	Serves as a reserve supply of oxygen	Rhabdomyolysis, acute myocardial	PDB:	153	
			and facilitates the movement of oxygen	infarction, rhabdomyolysis exertional	1U7S		
			within muscles.	acute, renal failure acute, rhabdomyosarcoma			
NGB	ENSG00000165553	Neuroglobin	Involved in oxygen transport in the brain. Involved in neuroprotection during oxidative stress.	Ischemia, stroke	-	150	
EDN1	ENSG00000078401	Endothelin-1	Endothelins are endothelium-derived	Hypertension pulmonary, vasospasm,	I-TASSER	212	
			vasoconstrictor peptides.	hypertension arterial, atherosclerosis, essential hypertension			
EDN2	ENSG00000127129	Endothelin-2	Endothelins are endothelium-derived	Essential hypertension, carcinoma	I-TASSER	178	
			vasoconstrictor peptides	renal cell, cardiovascular diseases,			
				hypertension pulmonary, vascular			
				diseases			
EDN3	ENSG00000124205	Endothelin-3	Endothelins are endothelium-derived	Shah-waardenburg syndrome,	I-TASSER	238	
			vasoconstrictor peptides.	hirschsprung disease, waardenburgs			

				syndrome, colonic aganglionosis, central hypoventilation syndrome, congenital		
EDNRA	ENSG00000151617	Endothelin receptor type A	Receptor for endothelin-1. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second	Staphylococcal scalded skin syndrome, hypertension arterial, staphylococcal scarlet fever, hypertension pulmonary, bullous impetigo	I-TASSER	426
EDNRB	ENSG00000136160	Endothelin receptor type B	Non-specific receptor for endothelin 1, 2, and 3. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system.	Hirschsprungdisease,shah-waardenburgsyndrome,waardenburgssyndrome,staphylococcal scalded skinsyndrome,hirschsprung disease 2	I-TASSER	442
AGTR1	ENSG00000144891	Angiotensin II receptor type 1	Receptor for angiotensin II. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system	Essential hypertension, diabetic nephropathies, renal disease, cardiovascular diseases, heart failure	-	358
AGTR2	ENSG00000179772	Angiotensin II receptor type 2	Receptor for angiotensin II. Cooperates with MTUS1 to inhibit ERK2 activation and cell proliferation.	Diabetic nephropathies, cardiac hypertrophy, ventricular hypertrophy, renal disease, hypertrophy	-	120
ADRA1A	ENSG00000120907	Adrenergic receptor alpha-1 A	This alpha-adrenergic receptor mediatesits action by association with G proteinsthatactivatephosphatidylinositol-calciumsecondmessengersystem.Nuclear	Benign prostatic hyperplasia, attention-deficit hyperactivity, disorder	-	466

			ADRA1A-ADRA1B heterooligomers			
			regulate phenylephrine (PE)-stimulated			
			ERK signaling in cardiac myocytes.			
ADRA1B	ENSG00000170214	Adrenergic	This alpha-adrenergic receptor mediates	Hyperfunction, cardiomyopathy, heart	-	520
		receptor	its action by association with G proteins	failure		
		alpha-1 B	that activate a			
			phosphatidylinositol-calcium second			
			messenger system. Nuclear			
			ADRA1A-ADRA1B heterooligomers			
			regulate phenylephrine (PE)-stimulated			
			ERK signaling in cardiac myocytes.			
ADRA1D	ENSG00000171873	Adrenergic	This alpha-adrenergic receptor mediates	Benign prostatic hyperplasia, essential	I-TASSER	572
		receptor	its effect through the influx of	hypertension, obstruction		
		alpha-1 D	extracellular calcium.			
AVP	ENSG00000101200	Arginine	Vasopressin has a direct antidiuretic	Central diabetes insipidus,	I-TASSER	
		vasopressin	action on the kidney, it also causes	hyponatremia, siadh, diabetes insipidus		
			vasoconstriction of the peripheral	nephrogenic, carcinoma oat cell		
			vessels.			
AVPR1A	ENSG00000166148	Arginine	Receptor for arginine vasopressin. The	Adrenal hyperplasia, dysmenorrheal,	-	418
		vasopressin	activity of this receptor is mediated by	tumors, ischemia, cancer lung		
		receptor 1 A	G proteins which activate a			
		1	phosphatidyl-inositol-calcium second			
			messenger system.			
AVPR1B	ENSG00000198049	Arginine	Receptor for arginine vasopressin. The	Cushing syndrome, carcinoid, major	-	424
		vasopressin	activity of this receptor is mediated by	depression, adenoma, tumors		
		receptor 1 B	G proteins which activate a	1 ,		

phosphatidyl-inositol-calcium	second
messenger system	
Note: The Protein Data Bank (PDB) is a database containing experimentally determined th	hree-dimensional structures of proteins, nucleic acids and other biological

macromolecules, with approximately 8000 entries (<u>http://www.rcsb.org/pdb/</u>). I-TASSER is a state-of the-art hierarchical protein structure modeling approach that is based on the secondary-structure enhanced profile-profile threading alignment (Zhang 2008). The "-" indicated 3D structure did not be used in this study.

Tables S2 Statistics for amplified exons of 11 genes for each species.

Species	HBA					
	Exon1	Exon2	Exon3			
Tursiops truncatus	~	✓	~			
Delphinus capensis	~	✓	~			
Sousa chinensis	~	✓	~			
Neophocaena phocaenoides	~	~	~			
Delphinapterus leucas						
Lipotes vexillifer	~	✓	~			
Mesoplodon densirostris	~	✓	~			
Kogia sima	~	✓	~			
Physeter macrocephalus	~	✓	\checkmark			
Balaenoptera acutorostrata	~	✓	~			
Banaenoptera omurai						

Note: tick represents successfully amplified, while no sign in any genes indicate no amplification despite numerous attempts.

Species		HBB	
	Exon1	Exon2	Exon3
Tursiops truncatus	~	✓	~
Delphinus capensis	~	~	~
Sousa chinensis	~	✓	~
Neophocaena phocaenoides	~	✓	~
Delphinapterus leucas	~	✓	~
Lipotes vexillifer	~	✓	~
Mesoplodon densirostris	~	~	~
Kogia sima	~	✓	~
Physeter macrocephalus	~	~	~
Balaenoptera acutorostrata	~	✓	~
Banaenoptera omurai	~	✓	v

Species			
	Exon1	Exon2	Exon3
Tursiops truncatus	✓	✓	v
Delphinus capensis	~	✓	✓
Sousa chinensis	✓	✓	✓
Neophocaena phocaenoides	~	✓	✓
Delphinapterus leucas	~	✓	✓
Lipotes vexillifer	✓	✓	~
Mesoplodon densirostris	~	✓	
Kogia sima	~	✓	✓
Physeter macrocephalus	~	✓	
Balaenoptera acutorostrata	✓	✓	~
Banaenoptera omurai	~	~	✓

Species	NGB						
	Exon1	Exon2	Exon3	Exon4			
Tursiops truncatus		✓	~	~			
Delphinus capensis		~	~	~			
Sousa chinensis		✓	~	~			
Neophocaena phocaenoides		~	~	~			
Delphinapterus leucas		✓	~	~			
Lipotes vexillifer		~	~	~			
Mesoplodon densirostris		~	~	~			
Kogia sima		~	~	~			
Physeter macrocephalus		✓	~	~			
Balaenoptera acutorostrata		✓	~	~			
Banaenoptera omurai		✓	✓	✓			

Species	EDN1					
	Exon1	Exon2	Exon3	Exon4	Exon5	
Tursiops truncatus	~	✓	✓	~	~	
Delphinus capensis	✓	✓	✓	~	~	
Sousa chinensis	✓	✓	✓	~	~	
Neophocaena phocaenoides	~	✓	~	~	~	
Delphinapterus leucas	✓	✓	✓	~	~	
Lipotes vexillifer	~	✓	~	~	~	
Mesoplodon densirostris	✓	✓	✓	~	~	
Kogia sima	✓	✓	✓	~	~	
Physeter macrocephalus	~	✓	~	~	~	
Balaenoptera acutorostrata	✓	✓			~	
Banaenoptera omurai	~	~	✓	~	~	

Species	EDN2						
	Exon1	Exon2	Exon3	Exon4	Exon5		
Tursiops truncatus	~	✓	✓	~	✓		
Delphinus capensis	~	✓	✓	~	✓		
Sousa chinensis	~	~	✓	~	~		
Neophocaena phocaenoides	~	✓	✓	~	✓		
Delphinapterus leucas	~	~	✓	~	~		
Lipotes vexillifer	~	✓	✓	~	✓		
Mesoplodon densirostris	~	~	✓	~	~		
Kogia sima	~	✓	✓	~	✓		
Physeter macrocephalus	~	✓	✓	~	✓		
Balaenoptera acutorostrata	~	~	✓	~	~		
Banaenoptera omurai	~	~	~	✓	~		

Species			EDN3		
	Exon1	Exon2	Exon3	Exon4	Exon5
Tursiops truncatus	~	✓	✓	~	~
Delphinus capensis	~	✓	✓	~	~
Sousa chinensis	~	✓	✓	~	~
Neophocaena phocaenoides	~	✓	✓	~	~
Delphinapterus leucas	~	✓	✓	~	~
Lipotes vexillifer	~	~	✓	~	~
Mesoplodon densirostris	~	✓	✓	~	~
Kogia sima	~	✓	✓	✓	~
Physeter macrocephalus	~	✓	✓	~	~
Balaenoptera acutorostrata	~	✓	✓	~	~
Banaenoptera omurai	~	✓	✓	~	~

Species	EDNRA							
	Exon1	Exon2	Exon3	Exon4	Exon5	Exon6	Exon7	Exon8
Tursiops truncatus	~	~	~	~	~	~	~	~
Delphinus capensis	~	~	~	~	~	~	~	~
Sousa chinensis	~	~	~	~	~	~	~	~
Neophocaena phocaenoides	~	~	~	~	~	~	~	~
Delphinapterus leucas	~	~	~	~	~	~	~	~
Lipotes vexillifer	~	~	~	~	~	~	~	~
Mesoplodon densirostris	~	~	~	~	~	~	~	~
Kogia sima	~	~	~	~	~	~	~	~
Physeter macrocephalus	~	~	~	~	~	~	~	~
Balaenoptera acutorostrata	~	~	~	~	~	~	~	~
Banaenoptera omurai	~	~	~	~	~	~	~	~

Species	EDNRB							
	Exon1	Exon2	Exon3	Exon4	Exon5	Exon6	Exon7	Exon8
Tursiops truncatus	~	~	~	~	~	~	~	~
Delphinus capensis	~	~	~	~	~	~	~	~
Sousa chinensis	~	~	~	~	~	~	~	✓
Neophocaena phocaenoides	~	~	~	~	~	~	~	~
Delphinapterus leucas	~	~	~	~	~	~	~	~
Lipotes vexillifer	~	~	~	~	~	~	~	~
Mesoplodon densirostris	~	~	~	~	~	~	~	~
Kogia sima	~	~	~	~	~	~	~	~
Physeter macrocephalus	~	~	~	~	~	~	~	~
Balaenoptera acutorostrata	~	~	~	~	~	~	~	~
Banaenoptera omurai	~	~	~	~	~	~	~	~

Species	AGTR1	
	Exon1	
Tursiops truncatus	v	
Delphinus capensis	\checkmark	
Sousa chinensis	v	
Neophocaena phocaenoides	v	
Delphinapterus leucas	\checkmark	
Lipotes vexillifer	\checkmark	
Mesoplodon densirostris	\checkmark	
Kogia sima	v	
Physeter macrocephalus	\checkmark	
Balaenoptera acutorostrata	v	
Banaenoptera omurai	v	

Species	AGTR2	
_	Exon1	
Tursiops truncatus	✓ Partial sequences	
Delphinus capensis	✓ Partial sequences	
Sousa chinensis	✓ Partial sequences	
Neophocaena phocaenoides	✓ Partial sequences	
Delphinapterus leucas	✓ Partial sequences	
Lipotes vexillifer	✓ Partial sequences	
Mesoplodon densirostris	✓ Partial sequences	
Kogia sima	✓ Partial sequences	
Physeter macrocephalus	✓ Partial sequences	
Balaenoptera acutorostrata	✓ Partial sequences	
Banaenoptera omurai	✓ Partial sequences	

Table S2 List of primara	used to emplify the	ading ragions of	hunavia talaranaa	alated gapes in this study
Table 55 List of primers	used to amplify the	county regions of	hypoxia-tolerance-i	cialcu genes in uns sluuy.

Gene	Sense Primer	Antisense Primer	Melting Temp (°C)	Product Size (bp)
HBA	GGACCAGGATAGCACTTC	GGACCAGGATAGCACTTC	50-55	1384
HBB	GAAGGGAACTGAGGAACA	GTGAGCAAACAGGGTAAA	50-55	820
	GGACCAGACAATCACAGA	AGACAACCAGCAGCCTAA	50-55	451
	YAGCKRCTGCTTACACTTGC	CTCTTCCATTCTAAACTGC	50-55	610
	TGCTTCTTGAAATGGTCCTA	GAATATGGTCTTCCGATGGT	50-55	412
MB	GCCTTGCTCTTCTTCTCT	CTGACTCCAATCTCTGACA	50-55	302
	CTTGCTCTTCTTCTTCTTCTTC	TCCTGACTCCAATCTCTGA	50-55	302
	GCTCTTCTTCTCTTCTCAG	GCTCTAGGCATACAGGATT	50-55	375
	CATTTAATCCTCACGCTTCT	CACTTCCTCCTTGGTAACA	50-55	648
	TGCCTGGTAGATAGTAAGTG	TAGGTGAAAGGAGAGTTGAG	50-55	557
NGB	CTTCCTGTCCCAGTCCA	GAGTCGCCAGCCTCTAA	50-55	731
	TCCTATGCCAGGTCGTATGAG	GCTCAAAGCCCTAAACACAC	50-55	752
	GGTTCTGGATTATGGTCGTG	AGGCTGTTCTGGGATGG	50-55	496
	TCTCTTCCTTCTGGTTGG	GGCTCCTTCACTTCCTAT	50-55	459
	CTCAGGTTCATCTCAGGTT	GGCTACAATGGACACAGA	50-55	586
EDN1	TTCGGGTTTAGTTCGCAGTG	ATTCCCTTGACATCCTTTCT	50-55	866
	CCAAATGTCTAACAGGCAGTAT	TCTAGGTCTCGCTCTACCATAA	50-55	915
	CCAAATGTCTAACAGGCAGTAT	AGCCACGTATGACCTCAGCAAC	50-55	755
	CGAAACAGATACCAAAGC	CTCCCATCAAGGCAAGA	50-55	801
	TCACTTGAGGTTAGCAGGGTA	TGGAGGCAAATGAAGACG	50-55	483
EDN2	AGGGCACCGAGGCAATG	GCAGTGCTTGGCGTAGGGA	50-55	1110
	GGTGGGACTTCTTGAGGTGAG	GGGCAGTGAGATGGGTTGG	50-55	484
	CGGTCCTGGTTTATCTAATCCTC	TTTCTACTTTCCCAAATGCTCC	50-55	777
	GGAGCATTTGGGAAAGTAGAA	TCTGGTGGTAACAAAGAGCATAG	50-55	654

	GCACAGGGTGGAAATGGA	CCTTGGGCAAACACCTTCA	50-55	315
	TTGGGTGACGGAAGGTAAA	ACGCCGTTCCTTTCAGC	50-55	713
	TTGGGTGACGGAAGGTAAA	ACCCATCCAGCCTCTACGG	50-55	833
EDN3	CAGCGGGCACAGATA	CCCACAGGAGGTAAGGA	50-55	1075
	CCACAGTTGGGTCTTGA	CACATCGGGTGGAACA	50-55	680
	TTCGAGTGGGACATGC	CATACGGCAGCGACT	50-55	751
	AGGTGACATTGGCATAAAG	TGAACCCAGCAGAAGC	50-55	857
EDNRA	ACTGCCATGTCCTCATAT	CTCCCACTCAGGCTCTAA	50-55	1491
	CTACTCAAAGGAAAAACTGCC	TCTTACCCTGGAAATGGA	50-55	1139
	GTCTCTTGCTACCACACTAA	TTCGTTGCCGTAAGGATG	50-55	526
	TAAGCCGTCATCCAAACC	GTTGCCTGAACCAAAGAT	50-55	644
	AACTCCAAATGGGTAGAA	ATAAGCATCAGCGTGTCT	50-55	753
	CACCTCCAAGCCCATTAC	CTGGCACAGTTCCAACCC	50-55	745
	TTGAAGAGGTGGAGGCAT	GAGAATGTAGAGTAGGTGGTT	50-55	379
	GCTGACATAGCCCACAAC	CCTGCACCCTTGAACTCT	50-55	1287
	TTCTGACTGCCACCTATAAG	CCTCTGAATATGTTGTTGTCTG	50-55	444
	TTACAAACTCCCTACCCT	AAACCAGTCAACCCTTCA	50-55	517
	CCAGCCCTTTCCACTCAT	CCGCCAACTCCCACCATT	50-55	767
	GTTCTGCCTCTTATTATCC	GGTGACCAGTTCTTACGG	50-55	1256
EDNRB	CATCCTTTCCTCCCTGTC	GGTTCCAATGATTACTGACTT	50-55	952
	TCTCCCTCTGGGCACAAC	GGTTCCAATGATTACTGACTT	50-55	998
	CCACTTCCTTGTTCCAGA	CAGAGCCCAGTTTTATTG	50-55	401
	CCACTTCCTTGTTCCAGA	GGCAGAGCCCAGTTTTAT	50-55	403
	GCCCTTTGGAGTTGAGAT	TCTGTATTCCTGAGCACC	50-55	660
	AGGCGATGACAGGGACAG	TGGTTGAGGCAGTAGGGA	50-55	885
	AATAAAACTGGGCTCTGC	GGGCGACTTCTACTTGAT	50-55	635

	TGAGGCGATGACAGGGAC	CCGCTCACCGCAACTATA	50-55	547	
	TAACTTGCCTATGTGAAGAC	CTACTCGCTCATTTGGAC	50-55	1242	
	GCTTCGTGTCTCCTCAAC	TGCTGTGCTGCTTCATAC	50-55	804	
AGTR1	GCTGTCTACACTGCTAT	ATCTCCTGTTGCTCCTCT	50-55	1217	
	CCCCACGTCTACTTGTCT	AGCCTTCTTTAGGGTCTT	50-55	962	
AGTR2	TTACCAGCAGTCTTCACG	CAAGTAATCGGAACCCTA	50-55	973	

Cetacean species	Family	Max. dive time	References
		(min)	
Odontocetes			
Delphinus delphis	Delphinidae	5	Evans 1971
Tursiops truncatus	Delphinidae	8	Ridgway and Harrison
			1986
Delphinus capensis	Delphinidae	5	Evans 1971
Sousa chinensis	Delphinidae	5	Parra et al. 2004
Orcinus orca	Delphinidae	10.4	Baird et al.2005
Neophocaena phocaenoides	Phocoenidae	2.48	Akamatsu et al. 2002
Delphinapterus leucas	Delphinidae	18.3	Martin et al. 1993
Lipotes vexillifer	Lipotidae	2	Parra et al. 2004
Mesoplodon densirostris	Ziphiidae	57.4	Tyack et al. 2006
Physeter macrocephalus	Physeteridae	73	Watkins et al. 1993
Kogia sima	Kogiidae	43	Breese and Tershy 1993
Mysticetes			
Balaenoptera acutorostrata	Balaenopteridae	13.4	Croll et al. 2001

Table S5 Previously reported maximum dive durations for cetaceans

Table S6 One-ratio model analysis in 17 genes					
Genes	Models	-lnL	2 ΔLnL	P value	ω values
HBA	M0(one-ratio)	3088.622			ω0= 0.200
	M0(constrained)	3224.482	271.72	< 0.001	ω0= 1
HBB	M0(one-ratio)	3528.038			ω0= 0.283
	M0(constrained)	3627.432	198.788	< 0.001	ω 0 = 1
MB	M0(one-ratio)	3945.824			ω0= 0.097
	M0(constrained)	4331.292	770.936	< 0.001	ω 0 = 1
NGB	M0(one-ratio)	1987.589			$\omega 0 = 0.073$
	M0(constrained)	2220.366	465.554	< 0.001	ω 0 = 1
AGTR1	M0(one-ratio)	5917.725			$\omega 0 = 0.081$
	M0(constrained)	6514.433	1193.416	< 0.001	ω0= 1
AGTR2	M0(one-ratio)	3569.236			ω0= 0.080
	M0(constrained)	3869.325	600.178	< 0.001	ω 0 = 1
EDN1	M0(one-ratio)	6094.134			ω0= 0.337
	M0(constrained)	6227.731	267.194	< 0.001	ω 0 = 1
EDN2	M0(one-ratio)	3507.497			ω0= 0.386
	M0(constrained)	3563.845	112.696	< 0.001	ω 0 = 1
EDN3	M0(one-ratio)	6548.742			$\omega 0 = 0.460$
	M0(constrained)	6624.958	152.432	< 0.001	ω 0 = 1
EDNRA	M0(one-ratio)	6112.603			ω0= 0.089
	M0(constrained)	6633.350	1041.494	< 0.001	ω0= 1
EDNRB	M0(one-ratio)	7887.625			ω0= 0.214
	M0(constrained)	8229.283	683.316	< 0.001	ω 0 = 1
ADRA1A	M0(one-ratio)	7962.800			ω0= 0.053
	M0(constrained)	9146.433	2367.266	< 0.001	ω 0 = 1
ADRA1B	M0(one-ratio)	7389.238			ω0= 0.044
	M0(constrained)	8504.499	2230.522	< 0.001	ω 0= 1
ADRA1D	M0(one-ratio)	10490.310			ω0= 0.075
	M0(constrained)	11694.867	2409.114	< 0.001	ω0= 1
AVP	M0(one-ratio)	3365.857			ω0= 0.092
	M0(constrained)	3688.287	644.860	< 0.001	ω0= 1
AVPR1A	M0(one-ratio)	8878.038			ω0= 0.128
	M0(constrained)	9567.991	1379.906	< 0.001	ω0= 1
AVPR1B	M0(one-ratio)	9980.951			ω0= 0.166
	M0(constrained)	10601.350	1240.798	< 0.001	$\omega 0=1$

Genes	Site Model	-ln <i>L</i>	$2 \Delta(\ln L)$	P value	ω values
HBA	M8a	976.937			ω= 1
	M8	973.857	6.16	0.013	ω= 2.459
HBB	M8a	995.882			ω= 1
	M8	991.361	9.042	0.003	ω= 4.860
MB	M8a	1194.849			
	M8	1192.871	3.956	0.047	ω= 1.796
EDN2	M8a	1201.265			ω= 1
	M8	1197.744	7.042	0.008	ω= 14.891
ADRA1D	M8a	2767.301			ω= 1
	M8	2762.365	9.872	0.002	ω=26.247

Table S7 Selective pressure analyses in cetaceans-only dataset using site model in PAML.

Gene	Site	PA	ML		Datamonke	у			TreeSAAP properties		
	Position	Site Model	Branch-Site	FEL	REL	FUBAR	AA	Parallel	Clade ^c	Radical Changes	Total
		(M8) ^a	Model ^a	<i>p</i> <0.2 ^b	BF>50 ^b	pp>0.8 ^b	Changes	Changes		in AA Properties ^d	
HBA	16	0.912		0.106	450.038	0.820	G-A		а	P_{α}, P_{c}, P	3
							A-S		h	P_{α}, P_{c}, P	3
							A-G		c 1	P_{α}, P_{c}, P	3
	18	0.897		0.134	406	0.805	V-I		а	рК'	1
							I-V	Yes	b1, n	pK'	1
	20	0.989			149.32	0.901	G-S		а		
							S-N	Yes	d, m1		
							N-S		v		
							S-G	Yes	c1, i1		
	22	0.981		0.084	475.336	0.836	A-G	Yes	d, m1	P_{α}, P_{c}, P	3
							G-S		e		
	25	0.920		0.116	416.941	0.839	Y-F	Yes	n,b1	F	1
	52	0.843			176.704	0.859	G-N		Ν		
							G-D		m1	$\alpha_c, P_r, E_t,$	3
	74	0.802			134.561		L-M		а		
							M-I		d	pK'	1
							M-L		n		

Table S8 All Amino acid sites under positive selection identified by PAML, DATAMONKET and TreeSAAP

	76	0.864			146.049		D-N		а	α_c ,	1
							N-T	Yes	n, c1		
							T-A		i1	P_{α} ,	1
	112	0.886			178.977		A-V		а	P_{eta}	1
							V-L	Yes	d, m1		
							V-A		n	P_{eta}	1
HBB	3		0.938				H-Q		f1		
	11		0.928				A-G		f1	P_{α}, P_{c}, P	3
	12		0.995				V-L		f1		
	45	0.953		0.092	442.775	0.963	S-A	Yes	q, c1	P_{α}, P_{c}, P	3
							S-H		n	F	1
	51		0.943				T-S		f1		
	60	0.917			56.360		K-N		b	pH_i	1
			0.988				N-S		i1		
			0.960				N-K		f1	pH_i	1
	62		0.997				K-Q		f1	pH_i	1
	63	0.994		0.200	384.186	0.958	A-S		i1	P_{α}, P_{c}, P	3
			1.000				A-K		c	$K^{o}, B_{r}, E_{sm}, E_{t}, h$	5
	73	0.943	0.936		179.09	0.927	S-G	Yes	e, f1		
							G-S		a1		

	88	0.891	0.933	0.169	308.649	0.926	T-Q		i1			
							T-A		с	P_{α}	1	
	134		0.971				V-L		i1			
MB	6	0.861		0.140			G-A	Yes	l, q	P_{α}, P_{c}, P	3	
	36	0.921		0.102		0.896	G-S		n			
							S-H		р	F	1	
	52	0.872		0.141			T-S	Yes	l, p			
	75			0.159		0.875	G-A	Yes	d, n	P_{α}, P_{c}, P	3	
							A-G		k	P_{α}, P_{c}, P	3	
	130	0.856		0.151			G-A	Yes	r, el	P_{α}, P_{c}, P	3	
EDN1	125			0.199		0.850	Q-E		i			
EDN2	12			0.039	761.565	0.965	V-A		c	P_{eta}	1	
							V-I		i1	рК'	1	
	114	0.942		0.023	190.831	0.984	R-Q	Yes	z, c1	pH_i	1	
							R-L		11	N_s , α_n , pH_i , B_r , R_F , h, H_{nc} , p, E_{sm} , E_t	10	
	162	0.937		0.057	70.988	0.977	Q-R	Yes	f, c1, m1	pH_i	1	
EDN3	34			0.144		0.838	T-A		f1	P_{α}	1	
							T-R		m1	$pH_i, H_{nc}, E_{sm},$	3	
	152			0.155		0.843	E-Q		а		0	

						Q-L		Z	N_s, B_r, h, F, p, E_t	6
						Q-R		m1	pH_i	1
	167		0.169		0.842	R-G		d	$C_a, pH_i, M_v, M_w,$ $H_{nc}, V^0, u, E_{sm}, E_t$	9
EDNRA	19		0.196	63.872	0.912	I-V		f	Pk'	1
						I-F		m1		
	22		0.173	73.036	0.916	N-D		f1	α_c	1
						N-S		i1		
	161			54.314	0.878	F-L	Yes	z, b1		
EDNRB	80			10721.8	0.888	T-I	Yes	f, b1	$N_s, B_r, Pk', R_a, H_p,$ H_t	6
						T-A		f1	P_{lpha}	1
	347		0.195	11076.6		L-R		f	$N_s, B_r, R_F, h, pH_i,$ $H_{nc}, p, \alpha_n, E_{sm,}, E_t$	10
						R-H		W	E_{sm}	1
ADRA1D	454	0.988	0.041	436.44	0.968	P-T		а	K^{o}, H_{t}	2
						T-A	Yes	f, g1	P_{lpha}	1
	475	0.867				G-R		b1	$C_a, pH_i, M_v, M_w,$ $H_{nc}, V^0, \mu, E_{sm}, E_t$	9
	483	0.909				Q-P		b1	P_c, K^o, α_M, H_t	3
AVP	159			1111.96	0.852	A-S		t	P_{α}, P_{c}, P	3
	162			1271.98	0.885	G-P		t	B_b, α_c, H_t	3

^a Codons identified by PAML as under positive selection along with Bayesian (BEB) analysis PPs for sites with P>80% under M8 and branch-site models.

^b Codons were estimated in DATAMONKEY.

^c Amino acid substitution occurred along clades, with detailed information marked in Figure 1.

^d Radical changes in amino acid properties under category 6-8 were detected in TreeSAAP. Physicochemical amino acid properties available in TreeSAAP are as following: a_c : Power to be - C-term., α -helix; a_n : Power to be in the N-terminal of an α -helix; B_r : Buriedness; C_a : Helical contact energy; E_l : Long-range non-bonded energy; E_{sm} : Short and medium range non-bonded energy; E_t : Total non-bonding Energy; F: Mean r.m.s. fluctuation displacement; h:Hydropathy; H_{nc} : Normal consensus hydrophobicity; H_p : Surrounding hydrophobicity; H_t : Thermodynamic transfer hydrophobicity; K^o : Compressibility; μ : Refractive index; M_v : Molecular volume; M_w : Molecular weight; N_s : Average number of surrounding residues; P_a : α -helical tendencies; P_p : β -structure tendencies; P_c : Coil tendencies; P: Turn tendencies; p: Polarity; pH_i : Isoelectric point; pK': Equilibrium Constant of ionization for COOH; P_r : Polar requirement; R_a : Solvent accessible reduction ratio; R_F : Chromatographic index; V^0 : Partial specific volume;

Species	Genus	Family	Order	Habitat information	Reference
Bos grunniens	Bos	Bovidae	Artiodactyla	High-altitude environments of Tibetan Plateau, a low partial pressure of oxygen and high ultraviolet radiation	Qiu et al. 2012
Bos mutus	Bos	Bovidae	Artiodactyla	High-altitude environments of Tibetan Plateau, a low partial pressure of oxygen and high ultraviolet radiation	Leslie and Schaller 2009
Pantholops hodgsonii	Pantholops	Bovidae	Artiodactyla	High-altitude environments of Tibetan Plateau, a low partial pressure of oxygen and high ultraviolet radiation	Ge et al. 2013
Leptonychotes weddellii	Leptonychotes	Phocidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009
Mirounga angustirostris	Mirounga	Phocidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009
Phoca groenlandica	Phoca	Phocidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009
Pusa hispida	Pusa	Phocidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009
Cystophora cristata	Cystophora	Phocidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009

Table S9 Habitat information of species habitually exposed to hypoxia environment in this study

Erignathus barbatus	Erignathus	Phocidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009	
Callorhinus ursinus	Callorhinus	Otariidae;	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009	
Odobenus rosmarus divergens	Odobenus	Odobenidae	Carnivora	Marine mammals, substantial parts of their lives moving within the water, aquatic foraging, performing extreme dives	Stewart 2009	
Condylura cristata	Condylura	ra Soricomorpha Insectivora Semi-aquatic habit, adept burrower and excellent H swimmer F				
Spalax judaei	judaei Nannospalax			Subterranean, entire life in underground burrows, extremely hypoxic environments	Fang et al. 2014	
Spalax carmeli	Nannospalax	Spalacidae	Rodentia	Subterranean, entire life in underground burrows, extremely hypoxic environments	Fang et al. 2014	
Spalax golani	Nannospalax	Spalacidae	Rodentia	Subterranean, entire life in underground burrows, extremely hypoxic environments	Fang et al. 2014	
Heterocephalus glaber	Heterocephalus	Bathyergidae	Rodentia	Inhabit subterranean burrows in extremely hard soils, colony	Sherman et al 2002	
Ochotona curzoniae	Ochotona	Ochotonidae	Lagomorpha	High-altitude environments of Tibetan Plateau, a low partial pressure of oxygen and high ultraviolet radiation	Smith and Foggin. 1999	
Trichechus manatus latirostris	Trichechus	Trichechidae	Sirenia	Marine mammals, aquatic herbivore, diving	Stewart 2009	

Gene	Parallel	Branch Pair	Observed	Expected	P value
	Substitution		Number	Number	
ADRA1D	P50A	Heterocephalus	2	0	0
	A53G	glaber .VS. ancestor of			
		whales			
AVPR1B	I/V270T	Heterocephalus	1	0	0
		glaber .VS. ancestor of			
		whales			

Table S10 Convergent/parallel amino acid changes detected in hypoxia-exposed species

Figure. S1 The tree topology used to conduct the selective pressure analysis in PAML. This tree is based on OrthoMaM (Ranwez et al. 2007). Different orders of mammals were marked with different colors. Blue color branches in the tree represented cetaceans (branch: a-m1) (fig. 1) and other hypoxia species. They are used in the branch-site models tests, and results listed in table 2 and fig. 1. Convergent/parallel amino acid changes were identified the blue lineages leading to hypoxia-exposed animals. The symbols above the branches are the amino acid replacements (ADRA1D: P50A, A53G, AVPR1B: I/V270T).

HBA

MB

HBB residue 3

EDN1

EDN2

EDN3

EDNRA

EDNRB

ADRA1D

Figure S2 Distribution of mutations in the three-dimensional structure of HBA, HBB, MB, EDN1, EDN2, EDN3, EDNRA, EDNRB, ADRA1D, and AVP genes for cetacean. The figures were created using PyMOL (http://www.pymol.org).

Figure S3 Secondary structure and distribution of positively selected sites in relation to the functionally important regions for gene HBA, HBB, MB, EDN1, EDN2, EDN3, EDNRA, EDNRB, ADRA1D, and AVP.

Figure S4 The phylogenetic topology of the ADRA1D and AVPR1B gene based on nucleotide sequences and amino acid sequences. Numbers above the branches are the Bayesian posterior probabilities. (a) amino acid tree of ADRA1D; (b) nucleotide tree of ADRA1D; (c) amino acid tree of AVPR1B; (d) nucleotide tree of AVPR1B. Red and blue branches indicate the lineage along the ancestor of cetaceans and the naked mole rat, respectively.

									00
Homo sapiens	MV	HLTPEEKS	AVTALWGKVN	VDEVGGEALG	RLLVVYPWTQ	RFFESFGDLS	TPDAVMGNPK	VKAHGKKVLG	AFSDGLAHLD
Physeter macrocephalus		<mark>q</mark> A	GLA	. E. I		H	SAK	. Q A	S.GEK
LCA of the <i>P.macrocephalus</i>		A	A	. E. I		H	. A K N	A	S E K
Tursiops truncatus		G		. E			. A K N	K.QA	S.GE.K
Delphinus capensis		G		. E			. A K N	K.QA	S.GEK
Sousa chinensis		G		. E			. A K N	KA	S.GEK
Orcinus orca		G		. E			. A K N	KA	S.GEK
Delphinapterus leucas		G	A	. E			. A K N	KQA	S E K
Neophocaena phocaenoides		G		. E			. A K N	KA	S.GE.K
Lipotes vexillifer		G		. E			. A K. AN	KA	SEK
Mesoplodon densirostris		G	A A	. E		A	. A K N	K	SK
Kogia sima		A	A	. E. I		H	. A K. AS	S A	S E K. F.
Banaenoptera omurai		A	A	. E		A	. A K	A	SK
Balaenoptera acutorostrata		A	A	. E		A	. A K	A	SK

							147
Homo sapiens	NLKGTFATLS	ELHCDKLHVD	PENFRLLGNV	LVCVLAHHFG	KEFTPPVQAA	YQKVVAGVAN	ALAHKYH
Physeter macrocephalus				VR	EL. T.		
LCA of the P.macrocephalus				VR	EL. T.		
Tursiops truncatus	DA			VR	EL. S.	T	
Delphinus capensis	DA			VR	EL. S.	T	
Sousa chinensis	DA			VR	ES.	T	
Orcinus orca	DA			VR	EL. S.	T	
Delphinapterus leucas	DA			VR	EL. S.	T	
Neophocaena phocaenoides	DA			VR	EL. S.	T	
Lipotes vexillifer	DA			VR	EL. S.	T	
Mesoplodon densirostris	DA			V	EL		
Kogia sima	Q			VR	EL. T.	FL	
Banaenoptera omurai	D			R	EL		
Balaenoptera acutorostrata	D			IR	EL		

Figure S5. An alignment of HBB gene in cetaceans. The sequence of human on the top, and amino acids identical to human HBB are indicated by dots. The important site 3 discussed in the text was shaded by yellow. The alignment of sperm whale (*Physeter macrocephalusdouc*) and its last common ancestor (LCA) show the species-specific amino acid change (H3Q).

80

References:

Akamatsu T, et al. 2002. Diving behaviour of freshwater finless porpoises (*Neophocaena phocaenoides*) in an oxbow of the Yangtze River, China. ICES J Mar Sci. 59:438–443.

Baird RW, Hanson MB, Dill LM. 2005. Factors influencing the diving behaviour of fish-eating killer whales: sex differences and diel and interannual variation in diving rates. Can J Zool. 83:257–267.

Breese D, Tershy BR. 1993. Relative abundance of Cetacea in the Canal de Ballenas, Gulf of California. Mar Mammal Sci. 9:319-324.

Croll DA, Acevedo-Gutiérrez A, Tershy BR, Urbán-Ramírez J. 2001. The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores? Comp Biochem Physiol A Mol Integr Physiol. 129:797–809.

Evans WE. 1971. Orientation behavior of delphinids: radio telemetric studies. Ann N Y Acad Sci. 188:142-160.

Fang X, et al. 2014. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun. 5:3966–3966.

Ge RL, et al. 2013. Draft genome sequence of the Tibetan antelope. Nat Commun. 4:54–56.

Hickman GC. 1984. Swimming ability of talpid moles, with particular reference to the semi-aquatic Condylura cristata. Mammalia. 48:505–513.

Hamilton WJ.1931. Habits of the star-nosed mole, Condylura cristata. J Mammal. 4:345-355.

Leslie DM, Schaller GB. 2009. Bos grunniens and Bos mutus (Artiodactyla: Bovidae). Mammalian Species, 836:1-17.

Martin AR, Smith TG, Cox OP. 1993. Studying the behaviour and movements of high Arctic belugas with satellite telemetry. Symp Zool Soc Lond. 66: 195–210.

Parra GJ, Corkeron PJ, Marsh H. 2004. The Indo-Pacific humpback dolphin, Sousa chinensis (Osbeck, 1765), in Australian waters: a summary of current knowledge.

Aquatic Mammals 30:197–206.

Qiu Q, et al. 2012. The yak genome and adaptation to life at high altitude. Nat Genet. 44: 946–949.

Ridgway SH, Harrison RJ. 1986. Diving Dolphins. In: Bryden MM, Harrison RJ, editors. Research on Dolphins. Oxford: Clarendon Press. p. 33-58.

Sherman PW, Jarvis JUM. 2002. Extraordinary life spans of naked mole-rats (Heterocephalus glaber). J Zool. 258:307-311.

- Smith AT, Foggin JM. 1999. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim Conserv. 2:235–240.
- Stewart B. 2009. Diving Behavior. In: Perrin WF, Würsig B, Thewissen JGM, editors. Encyclopedia of Marine Mammals. San Diego: Academic Press. p. 321-329.
- Tyack PL, Johnson M, Soto NA, Sturlese A, Madsen PT. 2006. Extreme diving of beaked whales. J Exp Biol. 209:4238-4253.

Watkins WA, et al. 1993. Sperm whales tagged with transponders and tracked underwater by sonar. Mar Mammal Sci. 9:55-67.