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ABSTRACT The chemical implementation of a neuron
and connections among neurons described in prior work is used
to construct collective neural networks. With stated approxi-
mations, these chemical networks are reduced to networks of
the Hopfield type. Chemical networks approaching a station-
ary or equilibrium state provide a Liapunov function with the
same extremal properties as Hopfield's energy function. Nu-
merical comparisons of chemical and Hopfield networks with
small numbers (2-16) ofneurons show agreement on the results
of given computations.

Neural networks form the basis of a number of models of
parallel distributed computations (1). Many formulations of
parallel distributed neural networks exist: the perceptron (2),
Hopfield networks (3-7), feedforward networks, Boltzmann
machines, etc. (1). In prior articles (8, 9) we discussed the
components of a chemical neural network: a reaction mech-
anism with stationary state properties of a McCulloch-Pitts
neuron, interneuronal connections, logic gates, a clocking
mechanism, input and output of the entire neural network,
and clocked finite-state machines such as a binary decoder,
adder, and stack memories. In this article we combine these
components to build a computational device and show the
reduction, with stated approximations, to a Hopfield net-
work. In some Hopfield networks the states of the neurons
are permitted to change continuously in time, and therefore
there is no need for an autonomously oscillating catalyst. All
the connections between the neurons are inhibitory, and this
type of neural network can be implemented by an n-flop
circuit (5). Hopfield networks find application in problems
such as pattern recognition and associative memory; there
exists an energy (Liapunov) function for Hopfield networks,
and hence these problems are related to constrained extrem-
ization. Our chemical implementation of neural networks is
subject to the thermodynamic and stochastic theory ofchem-
ical kinetics close to and far from equilibrium. In this theory
there exists Liapunov functions for the relaxation to station-
ary states or equilibrium states (10-13). We show the relation
such Liapunov functions have to Hopfield's energy function.
We begin with a brief review of the components of a

chemical neural network and then discuss the reduction to
Hopfield type networks.

Construction of Chemical Neural Networks

A Single "Chemical Neuron." As a basis for a chemical
neuron we choose a cyclic enzyme mechanism studied by
Okamoto et al. (14, 15)

PI + Ci = Xvi + Ci Jji = k1Ci- k-LCiX1

X1j + Bi = X'j + Ai J2, = k2XiBi-k2Ai

X3i + Ai = X*i + Bi J3i = k3X3iAi-k3B

J4i= k4X3,-k-4, [11

where the concentration of the species marked by the super-
scripted asterisk is held at a constant value either by buffering
or by flows. Ai and Bi are the state species, and the stationary
state concentrations are functions of the concentration of the
catalyst Ci. With the rate constants given in ref. 1, the
stationary state concentrations are Ai < 2 x 10-4 mmol/liter
and Bi > 0.999 mmol/liter for Ci < 0.90 mmol/liter and Ai >
0.999 mmol/liter and Bi < 2 x 10-4 mmol/liter for Ci > 1.10
mmol/liter. Thus, the concentration of Ci determines the
state variables of neuron i.

Interneuronal Connections. The effect of the state of the
other neurons j, k, . . . on neuron i is expressed in Ci.
Hopfield networks require only inhibitory connections; the
firing of neuron j either inhibits or has no effect on the firing
ofneuron i. Ifwe treat the species Bj as an activator ofan inert
catalyst EU to make the active form CV in a reaction fast
compared to the relaxation time of Eqs. 1,

0

Eu + Bj =C Ci-= 1i [2]

1+
K(AO - Af)

then the firing of neuronj inhibits the firing of neuron i. The
sum of the active forms of the enzyme

Ci = E Cu
i

[3]

determines Ci in Eqs. 1.
One copy of the basic reaction mechanism ofa neuron (Eq.

1) exists for each chemical neuron in the network. Each
neuron is chemically distinct, but for convenience we assume
that the reactions that constitute each neuron are mechanis-
tically similar. A network is specified by the number of
neurons and the form ofthe connections between the neurons
(Eqs. 2).

Hopfield Neural Networks and the Energy Function

We begin with a discussion of the properties of Hopfield
networks and then show that the equations for the time
evolution of our chemical network can be reduced with
approximations to a Hopfield form (4). In the networks
examined by Hopfield, there are no internal dynamics of the
neurons: the time evolution of the state of each neuron is
described by a single differential equation that depends only
on the state of that neuron, the connection strengths between
neurons, and states of the other neurons,

dA-

dt jis
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where Ty = Tji is the connection strength and e(A,) gives
relaxation ofAi to its stationary state. For a system gover
by equations of this type, there exists a Liapunov funct
that is essentially derived from the temporal evolution, Eq

E=-i Ai E TjyAj + 2 E Ai E Tiji j#i i joi

FA,-2Z A e(A!)dA,.
'J

The variation of E with A, is given by

- = -1 TAj - 1 T31A, + 2 2 T1j-2e(Ai) = -2-,aAi joi j~iji dt

where we have made use of TU = Tji. Eq. 6 indicates tha
is an extremum in the stationary state. The second derival
of E,

a2E a dA,

A2 aAi dt

a2E a dA,
= -2-

aAjAi aAj dt

the
ned
tion
1.4,

[5]

[6]
Lt E
tive

[7]

is twice the negative of the Jacobian matrix, and the condition
for E to be a minimum (maximum) is for the negative of the
Jacobian to have only positive (negative) real parts (16). This
is precisely the condition for stability (instability) as deter-
mined by linear stability analysis (17). The time derivative of
E,

dE aE dA, / dA1 2
=I = I - I [8]dt i aA i dt dt/

is always less than or equal to zero. Thus, the stable station-
ary states of a Hopfield (or similar) neural network can be
interpreted as a (local) minimum of the energy function, and
the computation performed by this network is effectively an
extremization process.
The function E also arises in a stochastic analysis of the

neural network. If we write a Fokker-Planck equation for
Eqs. 4, then

aP(A1,. . . , t) aflP(A1, . . . t)
=aE AAt i aAi

mate the time evolution ofa chemical neuron to have the form
given by Eq. 4. In the Hopfield network the neurons have no
internal dynamics. In the chemical neural network, the
neurons do have internal dynamics due to the temporal
variations of the concentrations ofX1i and X3i. Thus, we must
approximate our chemical neural network to remove the
internal effects of X1i and X3i. If we approximate X1i and X3j
to be in a quasistationary state with respect to Ai and Ci, then
this will remove the internal dynamics. We make the usual
stationary state hypothesis for the intermediates X1, and X3,
and obtain

dAi (k2k1Bi - k-lk-2Ai)Ci k-3k4Bi- k3k-4Ai
I+

dt kLCi+k2Bj k3A1+ k4
[12]

In Eq. 4 the effects of the state of other neurons on neuron
i appear linearly as TU(Aj - 1). In Eq. 12 the effects of the
state of other neurons on neuron i appear nonlinearly in the
first term as Ci. Thus, we must further approximate the first
term of Eq. 12. We wish to retain the threshold behavior of
the variation of Ai with Ci. Hence, we linearize Eq. 1 around
Ci = 1 (the threshold point) and then approximate Cij to
depend linearly on Aj. Upon linearizing Eq. 12 around Ci =
1, the coefficient of Ci is a function ofAi. This coefficient must
be approximated as a constant since there are no AiAj terms
in Eq. 4. Thus, we set Ai = 0.5 (the stationary state value of
Ai when Ci = 1) in the coefficient of Ci and obtain

dAi [k2k, - k-lk-2 (k2k, - k-lk-2)k-l] C

dt l2k-1 + k2 2(k-1 + k2/2)2 ]ji

(k2k1Bi - k-lk-2Ai)k-l kL3k4Bi-k3k4A
(k-l + k2Bi)

= C. E Cij+ e(Ai).
j

[13]

This approximate equation has the same thresholding prop-
erty and similar stationary states as Eqs. 1; as Ci increases
past 1, there is an abrupt change in the stationary state
concentration of Ai from Ai 0 for Ci < 1 to Ai 1 for Ci >
1.

In Eq. 4 the effect of neuronj on neuron i is given by T,j{Aj
- 1), and in Eq. 13 it is given by C0Cij. Thus we make the
identification

CoCij= TQ&Aj- 1). [14]
+DI'P(Al, .. . , t)

+ D '8Ai '[9

where we assume D to be a constant. The stationary prob-
ability distribution is given by

P(A1, .... .) e/2D' [10]

because

aP(Aj, . ..) -P(A1, . . ) aE P(A1, . )fi
aAi 2D aAi D

Thus, E gives the stationary probability distribution of a
Hopfield neural network with state-independent noise. The
potential E has the form suggested by Landau and Ginzburg
and by Schlogl (18-20).

Reduction of a Chemical Neural Network to a
Hopfield Network

We now show the reduction of the chemical implementation
of a neural network to the Hopfield form. We first approxi-

In a Hopfield network the stable stationary states are com-
posed of Ai near 0 or 1, and we wish our approximation, Eq.
13, to be best in the stationary states. From Eq. 14 we see
that, if Aj = 0, then C0Cij = -Tij, and ifAj = 1, then C, = 0.
For inhibitory connections (Eq. 2) the second condition is

I always guaranteed, and the first condition is used to choose
pairs of Elj and K in Eq. 2 to form the approximation,

[15]
Eo

-ij = co ---1
1 +

K Ao

Methods (3-6) exist for determining the Tij values for a
specific problem, and Eq. 14 allows us to determine Cij from
these Tij. In a typical optimization problem handled by a
Hopfield network, the neurons are connected in an n X n
matrix where the firing of one neuron suppresses the firing of
all neurons in its row or column. In an n x n matrix, there are
2n - 2 neurons in the same row or the same column as neuron
i, and therefore 2n - 2 nonzero Tij. We take all of these
nonzero Tij to be equal to T. If all the neurons in the same row
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and column are quiescent, then C0C, = -(2n - 2)T. In
case, neuron ifires, so Ci > 1 and (2n - 2)T < -CO. Like'
if only one of the neurons in the same row or columi
neuron i is firing, then COC, = -(2n - 1)T. In this c
neuron i is quiescent, so Ci < 1 and (2n - 1)T > -CO.
We have constructed the full chemical implementatio

2, 4, 9 and 16 neuron networks and reduced these, with
stated approximations, to Hopfield networks. For a 9-net
network, we have -C0/4 > T > -C0/3, and we choose I
- 2CO/7 ifneuron i and neuronj are in the same row or col
and 0 otherwise. Thus, we choose

Cj=
3/7 2(Ao -Aj)

10

if i7j and Aj is in the
same row or column
of the matrix as Ai

otherwise.

Fig. 1 shows the time evolution of the chemical ne
network described by Eqs. 1 and 16 (Upper) and the app
imation of that chemical neural network in the Hopfield i
described by Eqs. 4 and 15 (Lower). Both networks
initialized with identical Ai values. The Ai values of the I
state are given in the upper right-hand corner of each pa
and both networks relax to the identical final state; both
the same solution to a given computational problem.
chemical network relaxes slower than the approximate ne
network. The time dependence of the energy function (E
is also shown, and in Fig. 1 Upper and Lower the eni
decays monotonically and reaches a minimum in the stal

Time (sec)

FIG. 1. Plot of the nine Ai concentrations (lines) for the chemical
neural network given by Eqs. 1 and 15 (Upper) and the reduction of
that network to a Hopfield network given by Eqs. 4 and 14 (Lower).
Both networks start with identical initial conditions and both decay
to the same final state (denoted by the matrix of neuron activity in
the upper right-hand corners). The energy function (Eq. 5) is indi-
cated by circles, and in Upper (Eq. 23) is indicated by triangles.

this
wise
n as
ase,

ary state. In the chemical neural network the energy is not
necessarily a Liapunov function but is obeyed in this case.

Thermodynamic Liapunov Function

in of Ross and coworkers (10-13) have presented a thermody-
i the namic and stochastic theory of single- and multi-dimensional
uron chemical systems with multiple stationary states. The theory
T= centers on the function 4, where (i) its differential is a
umn species-specific affinity, (ii) it is the macroscopic driving

force to a stationary state, (iii) it is a global Liapunov
function, (iv) it provides necessary and sufficient conditions
for existence and stability of stationary states, (v) its time
derivative is a component of the total dissipation, (vi) it is an

[16] excess work of moving the system away from the stationary
state, (vii) it determines the relative stability of multiple
stationary states, and (viii) it determines a stationary prob-
ability distribution of a master equation.

.ural For each of the time-varying chemical species in a reaction
Irox- mechanism, a species-specific affinity is defined:
form
, are
final
nel,
find
The
-ural
q. 5)
ergy
tion-

100

L.
S
c
w

* * * *

PA, PA1 PZB1 P'B1 /.xl, -xl/ F1X3j -Xj [17]

The state indicated by a superscripted star is the stationary
state for linear systems and is the stationary state of the
instantaneously equivalent linear system for nonlinear sys-
tems. Two systems are thermodynamically and kinetically
equivalent if the constraints, the rates, and the affinities of
each step are identical. For the neural network this implies

(kjCj) + k-2A*
(k-1Cd)+2A7 [18]

k=4+k+3B[

k4 + k3Ai [9

k2X* B7 + kL3B7A . =
I

k-2 + k3X3i

B7*= A,-AA

[20]

[21]

where Ci is frozen at its instantaneous value. For each value
of Ci there is a different * state. The differential of is defined
as

dO = E [(tFx, - axl.)dxli + (/LXi - UXr)dX3i

+ (RAi - tLAA)dai + (.LB, - usi)db,];
cp

c
La

[22]

do is an inexact differential and a path of integration must be
chosen. Ross, Hunt, and Hunt have shown that the deter-
ministic path is the appropriate choice

zJ [(i.&X OXd + (A'X -A* -X3-~ /.UXiLX-) dXji1 x
dX3i

dt .1 dt

dAi dBi
dt i dt

[23]

for fulfillment of all eight properties listed, in particular, the
last. Because of the stationary state assumption, the species
involved in the connection reactions, Eq. 12, do not contrib-
ute to 4. In Fig. 1 Upper, the triangles show the value of 4,

which is continually decreasing: does not reach a stationary
value during the time shown because the concentrations of
X1, and X3, do not reach their stationary values on the time

C 0.500

0.250

0.000

0.750

-C 0.500
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scale shown. This is in contradiction to the assumption made
in deriving Eq. 12 and in part explains why the neural network
in the Hopfield form (Fig. 1 Lower) evolves on a faster time
scale than the chemical network (Fig. 1 Upper).
E and are different Liapunov functions, but here we show

how they are related. The form ofE (Eq. 5) was chosen such
that it is minimized during the time evolution of the network.
Specifying the TU determines exactly which function is min-
imized. E is useful since it indicates how TU can be tailored
for a given problem. 4, on the other hand, is important since
it is related to the thermodynamics of the network. The two
Liapunov functions describe different probability distribu-
tions. E arises from the solution of a Fokker-Planck equation
where the noise term is state independent and is the
stationary solution in the thermodynamic limit ofa birth-
death master equation that describes intrinsic fluctuations.
The two probability distributions are not unrelated: they both
predict that the probability maxima coincide with stable
stationary states and probability minima coincide with un-
stable stationary states.
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