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S1 Preparation of barnase

Protein Expression: In-vivo Barnase appears always together with its inhibitor Barstar;

if not, barnase becomes lethal to cells. In order to express Barnase we introduced a single

site mutation H102A in the gene expressing plasmid which is known to inactivate the

enzymatic hydrolyzing activity of Barnase through replacement of a side chain directly

involved in substrate binding or catalysis. This mutant is inactive but it is still folded:

such mutation has been shown to suppress toxicity of barnase which nonetheless shows

activity at non-enzymatic levels, suggesting that the structural disturbances in the folded

state are mainly restricted to the side chain [1, 2].

The aminoacid sequence of protein barnase was cloned into the pET100/D-TOPO

vector from Invitrogen. This vector contain a His-taq the N-terminus. After cloning of

barnase sequence into the pET vector we introduced two cysteines to pull the protein

from its ends. These residues were introduced using quick-change mutagenesis. E. coli

BL21(DE3) cells (Novagen, Darmstadt, Germany) were transformed with the plasmid

and grown at 37℃ in LB (Luria Bertani). Upon reaching an OD600 ∼0.8, protein ex-

pression was induced with 0.5 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) at

37℃ for 5 h. The cells were centrifuged and the pellet suspended in five volumes of

lysis buffer (50 mM Tris-HCl pH 7.9, 2 mM EDTA, 100 mM NaCl). Cells were lysed

by passage through a French press and the soluble proteins isolated by centrifugation

at 16000 rpm for 30 minutes. The resulting supernatant was loaded onto a Co-TALON

affinity column. The resin was washed with TALON equilibration buffer and the fusion

protein eluted from the column in 2 mL fractions with TALON elution buffer. The frac-

tions were analyzed by SDS-PAGE and those containing the fusion protein were pooled.

Then the sample was concentrated and purified by size exclusion chromatography using

50 mM NaHPO4, 100 mM NaCl, 1 mM DTT, pH 7.0. The fractions were analyzed by

SDS-PAGE and the pure protein was pooled and subsequently 3 mM DTT was added.

DTDP activation of cysteine-modified proteins: The resulting protein was reacted

with a concentrated stock of DTDP (10 mM in 0.1 M NaH2PO4/Na2HPO4, pH 5.5,

15% acetonitrile) such that DTDP was in a 25-fold molar excess of the protein, and

allowed to react for 24 h at RT. The excess of DTDP was then removed by dialysis

at 4℃. The protein is then activated and ready to be attached to DNA handles. The

activated protein was stored at 4℃. ESI-MS was used to confirm the activation of the

protein.

Generation of DNA handles: The 500 bp DNA handles were generated in large quan-

tities by PCR using Taq DNA polymerase and the pBR322 plasmid as template. Usually
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400 µg of handles were generated at a time using 7 mL of PCR reaction. The two types

of handles were generated using the primer 5’ Thiol-CAGTTC TCCGCAAGAATTG

together with either the primer 5’ Bio-GGAATCTTGCACGCCCTCGC or the primer

5 digoxigenin-GGAATCTTGCACGCCCTCGC. The PCR products were purified using

HiSpeed Plasmid Maxi Kit, from QIAGEN adding 3 mM DTT in the final elution buffer.

DNA–Protein Coupling: The two types of handles are mixed in equal amounts to

obtain digoxigenin/biotin (dig/bio) handles. Then, the handles mixture was reduced

with 30 mM DTT at RT for 1 h and concentrated down to 50–60 mL with a 30-

kDa MWCO Microcon centrifuge tube. Reducing agents are removed from the handles

by sequentially spinning them through three Micro Bio-Spin P6 columns equilibrated

with the spin column buffer. The resulting DNA molecules were immediately reacted

with a thiol-pyridine activated protein solution (protein molar ratio of 4:1; typically,

∼ 20 mM of DNA handles are reacted with ∼ 5 mM of activated protein). The reaction

is allowed to proceed O/N at RT. The extent of the DNA–protein coupling was assessed

by a 4% SDS–PAGE gel.
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S2 Elastic models

The elastic response of the peptide chain is assumed to satisfy the ideal WLC model [3],

given by:

kc(x) =
kBT

PL

[
1

2 (1− x/L)3 + 1 +
7∑

n=2

nan

(x
L

)n−1
]
, (S1)

where x is the equilibrium end-to-end distance of the peptide chain, P is the persistence

length and L = naadaa is the contour length of the peptide. naa is the total number of

aminoacids, equal to 110 for barnase, while daa is the equilibrium distance between con-

secutive aminoacids. Numerical coefficients an (n = 2, . . . , 7) depend on the analytical

expression used to model the WLC behavior. According to truncated version presented

in reference [4], these are equal to zero, whereas in reference [5] a numerical expan-

sion of the model is presented which leads to the following values: a2 = −0.5164228,

a3 = −2.737418, a4 = 16.07497, a5 = −38.87607, a6 = 39.49944, and a7 = −14.17718.

The globular structure is modeled as a single bond of length d = 3 nm (end-to-

end distance of the protein at zero force as has been measured by 1H-Nuclear magnetic

resonance chemical shifts [6]) that is oriented under mechanical force as a single magnetic

dipole does under applied magnetic field [3]. Consequently kd satisfies:

k−1
d (f) =

d2

kBT

− 1

sinh2
(

fd
kBT

) +

(
kBT

fd

)2
 . (S2)
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S3 Unfolding kinetic rates from unfolding forces

The unfolding kinetic rate is extracted from the master equation of the survival proba-

bility of state F , PF (f) along the stretching experiment:

kF→U (f) = −r 1

PF (f)

dPF
df

. (S3)

PF (f) is extracted from unfolding forces fU according to:

PF (f) =
n(fU > f)

nt
, (S4)

where nt is the total number of unfolding events and n(fU > f) is the number of events

with an unfolding force larger than f .
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S4 Bell-Evans (BE) and Dudko-Hummer-Szabo (DHS) mod-

els

The force-dependent survival probabilities of the folded PF (f) and the unfolded PU (f)

state along the stretching or releasing process satisfy dPF (f)
df = −kN→U (f)

r PF (f) and
dPU (f)
df = −kN←U (f)

r PU (f), respectively, where r is the loading rate in units of pN/s.

These differential equations can be solved for some analytical expressions of kF→U (f) and

kF←U (f) in order to find analytical expressions for 〈fU 〉 and 〈fF 〉 [7, 8, 9, 10, 11, 12, 13].

The BE model introduces the effect of force in the Arrhenius kinetic rate as follows:

k→(f) = km exp

(
fx‡

kBT

)
, km = k0 exp

(
−∆G‡

kBT

)
, (S5)

where x‡ is the position of the transition state, ∆G‡ is the height of the kinetic barrier,

and km is the kinetic rate at zero force. Therefore, when the unfolding kinetic rate

kF→U (f) is assumed to satisfy Eq. (S5) then x‡ = x‡U , ∆G‡ = ∆G‡U and km = kum. In

contrast, when we are modeling the unfolding kinetic rate kF←U (f) then x‡ = −x‡F ,

∆G‡ = ∆G‡F and km = kfm. From Eq. (S5) it can then be shown that:

〈f〉 =
kBT

x‡
log

(
x‡r

kmkBT

)
. (S6)

The DHS model derives the following analytical expression for the kinetic rate by

solving the Kramers equation:

k(f) = km

(
1− γ fx

‡

∆G‡

)1/γ−1

exp

{
∆G‡

kBT

[
1−

(
1− γ fx

‡

∆G‡

)1/γ
]}

, (S7)

where γ = 1/2 (γ = 2/3) for parabolic (linear-cubic) free-energy landscapes. The

differential equation for the pulling protocol can be solved, and hence:

〈f〉 =
∆G‡

γx‡

1−

 kBT

∆G‡
log

kmkBTe
∆G‡
kBT

+0.577

x‡r

γ . (S8)
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S5 Folding kinetic rates from passive experiments

In passive experiments the survival probability of the unfolded state, PU (t), satisfies:

PU (t) = exp [−kF←U (f)t] , (S9)

where we assume a two-state folding behavior and PU (t = 0) = 1. The survival proba-

bility PU (t) can be extracted from the passive experiments carried out at a given preset

force fp according to:

PU (t) = 1− n(tfold < t)

nt
(S10)

where nt is the total number of trajectories at fp and n(tfold < t) is the number of events

at which barnase folds at times tfold smaller than t. We get kF←U (f) by fitting the

experimentally measured survival probabilities PU (t) to Eq. (S9) (Fig. S1).
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Figure S1: Survival probabailities for state U in passive experiments at different preset
forces fp. Fit of the experimental survival probabilities exracted from passive traces at 3.0 pN (a),
3.5 pN (b), 4.5 pN (c), 5.0 pN (d) and 5.5 pN (e).
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S6 Power spectrum and elastic fluctuations

The power spectrum S(ν) is defined as the Fourier transform of the force correlation

funtion. In Fig. S2 we show results obtained working with a molecular construct that

contains no barnase (i.e. it is made of handles exclusively) and a full construct made of

one barnase and handles, respectively, measured at different values of the force.
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Figure S2: Power spectrums at different forces. Power spectrum of a molecular construction
made by the DNA handles without protein (left); made by the protein barnase barnase in the folded
(F ) state and the handles (center); and made by the protein barnase in the unfolded (U) state amd the
DNA handles (right). Data was taken at different preset forces fp ranging from 2 pN to 23 pN.

In all cases, the resulting power spectrum can be fitted to the double Lorentzian

function [14, 15]:

S(ν) =
Af

ν2 + ν2
f

+
As

ν2 + ν2
s

, (S11)

where Af and νf are the amplitude and frequency of the fast mode, and As and νs of

the slow mode. In Fig. S3 we show the results obtained by fitting the power spectrum

measured in the presence of protein barnase in the unfolded (U) and the folded (F ) state

(center and right panels in Fig. S2, respectively). The force-dependence of νs suggests

that this term is attributed to axial fluctuations occurring in the direction of propagation

of the light in the OT. In contrast, νf is due to the elastic fluctuations of the molecular
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construct tethered between the polystyrene beads. The force-dependent behavior of νf

does not reveal any signature of the presence of an intermediate state from neither state

U or state F . The force-dependent behavior of the amplitudes Af and As does not

reveal kinetic effects due to the presence of a possible intermediate, in contrast to the

fast protein villin as reported in reference [16]. Hence, no conformational transitions are

distinguished in the power spectrum profiles obtained when the protein barnase is either

folded or unfolded.
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Figure S3: Fit of the power spectrum to a double Lorentzian expression. Power spectra
measured at different forces for the two conformational states of protein barnase (folded and unfolded;
Fig. S2 center and right panels, respectively) are fitted to a double Lorentzian function (Eq. S11). The
resulting force-dependent behavior of the frequencies and the amplitudes is shown.

By modeling the Brownian motion of the bead in the optical trap with the Langevin

equation it is shown that the fast frequency mode (i.e. the elastic fluctuations) satisfy

νFf = kFeff/η and νUf = kUeff/η, being η = 2.6×10−4 pN·s/nm the water friction coefficient

at 25℃ for a micro-sphere (η = 6παR, where α = 9.1 × 10−3 Pa·s is the water viscous

coefficient and R = 1.5 µm is the radius of the bead captured in the optical trap).
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Therefore, according to Eqs. (1) and (2) (main text):

1

νUf
− 1

νFf
= η

(
1

kUeff

− 1

kUeff

)
(S12)

= η

(
1

kp(f)
− 1

kd(f)

)
. (S13)

Hence, according to Eq. (S12) it is possible to extract the elastic properties of the peptide

chain by fitting the subtraction of the inverse of the fast frequency modes obtained when

barnase is either unfolded or folded (lhs of Eq. S12) to the subtraction of the inverse of

the stiffness of the peptide chain and the inverse of the stiffness of barnase when it is

in the folded state (rhs of Eq. S13). Results are shown in Fig. S4 for the two analytical

expressions for the WLC elastic model used in this work (Eq. S1). Results are compatible

with the ones determined by measuring the effective stiffness of the system as described

in Section S1.
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Figure S4: Elastic response of the peptide chain. Experimental measurement of 1
νU
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− 1
νF
f

and fit

to Eq. S12 using the WLC elastic model (Eqs. S1 and S2). The resulting values for P and daa are given
in the Table. Error bars are standard statistical errors.

10



S7 Continuous Effective Barrier Analysis (CEBA)

According to the Arrhenius phenomenological law, the kinetic rates kF→U (f) and kF←U (f)

can be written in terms of the exponential of the kinetic barrier B(f), which corresponds

to the free energy of the TS mediating such a transition [17, 18]. Hence:

kF→U (f) = k0 exp

(
−B(f)

kBT

)
(S14a)

kF←U (f) = k0 exp

(
−B(f)−∆G(f)

kBT

)
. (S14b)

k0 is the attempt frequency at zero force and ∆G(f), the free energy difference between

the unfolded and the folded state at force f , equals:

∆G(f) = ∆G0 −
∫ f

0
xc(f)df +

∫ f

0
xddf, (S15)

where ∆G0 is the free energy at zero force, xc(f) is the end-to-end distance of the peptide

chain in state U that satisfies the WLC model (Eq. S1) and xd(f) is the projection along

the force axis of the protein diameter (Eq. S2). By inverting Eq. (S14) we get:

B(f) = kBT [log k0 − log kF→U (f)] (S16a)

B(f) = kBT [log k0 − log kF←U (f)] + ∆G(f) (S16b)

= kBT [log k0 − log kF←U (f)] + ∆G0 −
∫ f

0
xc(f)df +

∫ f

0
xddf. (S16c)

Hence, the force-dependent profile of the kinetic barrier between states F and U , B(f),

can be determined from the logarithm of experimentally measured unfolding and folding

kinetic rates and the theoretical evaluation of the integrals in Eq. (S16c) using the WLC

model. In addition, the CEBA methods provides estimations of the attempt frequency

at zero force and the free energy of the molecule at zero force from the force-dependent

kinetic rates. The steps to follow are as follows:

1. Extract the logarithm (with a minus sign) of the experimentally measured kF→U (f)

and kF←U (f) (Eq. S16).

2. Compute the following integrals:

I1 =

∫ f

0
xc(f)df I2 =

∫ f

0
xddf, (S17)
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for all force values f at which kF←U (f) has been measured. Then, according to

Eq. (S16c) compute − log kF←U (f)− I1 + I2 for each measurement.

3. Shift vertically the quantity − log kF←U (f)− I1 + I2 in order to match the force-

dependent behavior obtained for − log kF→U (f). The amount of the shift equals

the free energy of formation ∆G0 of the molecule.

The CEBA method has been successfully applied to until now to nucleic acid hair-

pins, whose force-dependent kinetic rates kF→U (f) and kF←U (f) were measured

at a similar range of forces and hence the matching could be performed straight-

forwardly [17, 18]. The case of protein barnase is starkly different, since a gap

of ∼ 7 pN is found between the maximum force value at which kF←U (f) is mea-

sured and the minimum force value at which kF→U (f) is measured (Fig. 3c). In

order to perform the matching, we merge together the experimentally measured

data points for − log kF→U (f) and − log kF←U (f) − I1 + I2 + ∆G∗0 for different

values of ∆G∗0, and perform a quadratic fit on the resulting data set. The value

of ∆G∗0 with the best quadratic fit (or, equivalently, at which χ2 is minimum)

corresponds to ∆G0. The dashed-gray line in Fig. 5a corresponds to the best fit,

where ∆G0 = 20 ± 5 kBT . Fig. S5 shows the value of χ2 for different values of

∆G∗0.

4. The previous fit gives B(f) − kBT log k0. By assuming that at large forces (f <

25 pN) the kinetic barrier B(f) vanishes, we can get a lower estimation for log k0

(Fig. 5a).

Finally, it can be shown that:

x‡U (f) = −∂B(f)

∂f
. (S18)
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Figure S5: χ2 test and CEBA method.
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S8 Fluctuation relations in presence of Bias

The Jarzynski free energy estimator for a collection of independent irreversible work

measurements between well-defined initial and final states reads as [19]:

∆G = − log

[
1

n

n∑
i=1

exp

(
− Wi

kBT

)]
, (S19)

where n is the number of work measurements Wi, kB is the Boltzmann constant and T

the absolute temperature (taken equal to 298 K). Equation (S19) is highly biased when

hysteresis effects are present in the experiments. In order to improve the estimation of

the free energy, in ref. [20] the authors provide an analytical expression for the bias given

by:

Bn = µ+ log n− Ω (log n)1/δ − λ(1−δ)/δ
[
γE +

1− δ
δ

log

(
log n

)
+ log

q

δ

]
, (S20)

where γE = 0.577215665 is the Euler-Mascheroni constant; Ω and δ are parameters

determined by fitting the work distribution’s left-most tail to the following expression:

P (W ) ∼ q

Ω
exp

(
−|W −Wmax|

Ω

)δ
; (S21)

and µ and λ are defined as:

µ = (δ − 1)

(
Ω

δ

) δ
δ−1

, λ = log n

(
δ

Ω

) δ
δ−1

. (S22)

Now, the expression:

∆G∗ = − log

[
1

n

n∑
i=1

exp

(
− Wi

kBT

)]
−Bn, (S23)

is a proper estimate of the free-energy difference in systems with high dissipation.

In Fig. 5b the fits of the left-most tails of the work distributions obtained in stretching

and releasing experiments to Eq. (S21) are shown. In each case, the term Wmax is fixed

at the value of the work at which the experimental distribution has the maximum,

Ω is related to the variance of the distribution, q is a normalization constant, and δ

is related to the shape of the tail and must be larger than 1. Results are Wmax =

1121 ± 3 kBT, Ω = 15 ± 1 kBT, q = 0.57 ± 0.05 kBT and δ = 1.90 ± 0.05 kBT for
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stretching; and Wmax = 1022 ± 1 kBT, Ω = 7 ± 1 kBT, q = 0.55 ± 0.06 kBT and

δ = 1.80± 0.05 kBT for releasing.
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S9 Energetic contributions from the experimental setup

The free-energy difference ∆G (or ∆G∗) determined from fluctuation relations contains

contributions from the molecule, the handles and the bead in the optical trap, as follows:

∆G = ∆G0 + ∆Wst + ∆Whandles + ∆Wbead. (S24)

∆G0 is the free energy of formation of the molecule at zero force. ∆Wst = WU
st −WN

st is

the difference between the reversible work needed to stretch the unfolded protein from 0

to fmax (force applied to the molecular system at λ1) and the reversible work needed to

align the folded protein along the force axis from 0 to fmin (force applied to the molecular

system at λ0):

∆Wst =

∫ xU (fmax)

0
fU (x′)dx′ −

∫ xN (fmin)

0
fN (x′)dx′, (S25)

where fU (x) (fN (x)) and the inverse function xU (f) (xN (f)) are the equation of state

of the unfolded (folded/native) protein. The first integral is computed using the WLC

model (Eq. S1) with persistence length P = 0.60±0.05 nm and inter-aminoacid distance

daa = 0.34 ± 0.01 nm/aa. The second integral is computed according to Eq. (S2).

∆Whandles is the reversible work needed to stretch the handles form fmin to fmax:

∆Whandles =

∫ xhandles(fmax)

xhandles(fmin)
fhandles(x

′)dx′, (S26)

where fhandles(x) and the inverse xhandles(f) are the state equation of the dsDNA han-

dles, modeled according to the extensible WLC model where the Bouchiat interpolation

formula is used [5]. The elastic parameters are taken from ref. [14], where experiments

with similar ionic concentrations as the ones used here are performed [14]. Hence, the

persistence length is equal to P = 34± 5 nm, the Young modulus S = 850± 100 pN and

the interphosphate distance db = 0.34 nm/base. ∆Wbead is the reversible work needed

to pull the trapped bead from fmin to fmax:

∆Wbead =

∫ xbead(fmax)

xbead(fmin)
f(x′)dx′ =

∫ fmax

fmin

f ′

kbead(f ′)
df ′. (S27a)

Here, the force-dependent strap stiffness determined by N. Forns and collaborators for

the mini-tweezers is used [21], kbead(f) = 0.062 + 0.00059f pN/nm.
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