Table S2. Mean prediction accuracy across population and environment learning schemes for PH and HD in WI and NE.

		PH in WI		PH in NE	
		Within env.	Across env.	Within env.	Across env.
WS4U-C2	Within pop.	0.254	0.253	0.292	0.297
	Across pop.	0.235	0.247	0.289	0.297
Liberty-C2	Within pop.	0.329	0.364	0.460	0.458
	Across pop.	0.334	0.367	0.461	0.454
		HD in WI		HD in NE	
		Within env.	Across env.	Within env.	Across env.
WS4U-C2	Within pop.	0.312	0.314	0.268	0.285
	Across pop.	0.291	0.300	0.272	0.285
Liberty-C2	Within pop.	0.530	0.519	0.421	0.448
	Across pop.	0.506	0.478	0.410	0.431

Prediction accuracies were estimated with Base – GBLUP in five-fold cross-validation replicated ten times. The significance of differences in prediction accuracy was assessed by two-sided paired Dunnett tests, which accounted for multiple comparisons of learning schemes to a single reference (the within-population/within-environment scheme). The t-statistics in Dunnett tests were adjusted to account for correlation among training sets in cross-validation, as described in Bouckaert and Frank (2004). For a given population and trait-location combination, differences in prediction accuracy compared to the within- population/within-environment scheme were never deemed significant (p > 0.10 in paired Dunnett tests).