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Supplementary Notes	
  
 
Bimodal pattern in GenoSkyline score 
 
When estimating the proportion of functional genome for each tissue type, we adopted 
0.5 as the cutoff for GS score. The GS score histograms for different tissues on 
chromosome 22 are plotted in S6 Fig. The GS score distributions have a clear and 
consistent bimodal pattern across different tissue types. The similar bimodal pattern can 
also be observed for other chromosomes. Therefore, the cutoff choice does not 
substantially affect the estimation of functional proportion. 
 
 
Robustness of GenoSkyline parameter estimation 
 
The parameters in the GenoSkyline framework were estimated from a set of 12,801,840 
nucleotides acquired from GWAS catalog. The reason of using this GWAS-based set is to 
guarantee the inclusion of a sufficient amount of functional nucleotides. In our previous 
work, we showed that parameter estimation under this framework is robust [1]. Here, all 
the 17 parameters were re-estimated after adding 2,000,000 and 6,000,000 bases 
randomly selected from chromosome 1 to the initial set containing 12,801,840 bases. The 
parameter estimates remained highly stable (S11 Table). These results show that 
GenoSkyline parameter estimation is insensitive to the choice of the initial set. 
 
 
Robustness against selection of epigenetic marks 
 
In this section, we compare the blood-specific outcomes of the GenoSkyline framework 
in the HBB region when different epigenetic marks are included in the model. First, we 
dropped one mark at a time, and then applied the GenoSkyline framework to the 



remaining seven annotations. Blood-specific functionality score was then calculated for 
each nucleotide in the HBB region. In S7 Fig, we can see that tissue-specific 
functionality score remained considerably robust. Most of these seven-mark-annotations 
were able to effectively capture the known coding and non-coding functional elements in 
the HBB region. However, there was no sign of any seven-mark annotation 
outperforming the GenoSkyline annotation based on all eight marks. We could also see 
from S7 Fig that H3K4me1 and H3K27ac, two histone marks that are known to associate 
with enhancer activity, seemed to contribute the most to the GenoSkyline annotation in 
this region. We then further investigated if functional elements could be identified using 
only one epigenetic mark. We applied the GenoSkyline framework to one mark at a time 
and calculated the blood-specific functionality score. Single-mark annotation showed 
drastic decline in its ability to identify tissue-specific functionality in the HBB region (S8 
Fig). Finally, we compared the results based on two enhancer-associated marks (i.e. 
H3K4me1 and H3K27ac) with the results based on two promoter-associated marks (i.e. 
H3K4me3 and H4K9ac). Functional scores based on enhancer-associated marks were 
much more correlated with known functional elements in the HBB region. Interestingly, 
integrating all eight marks still showed some improvement in identifying functional 
elements. For example, enhancer-associated marks failed to identify a few cis-regulatory 
modules in the locus control region while GenoSkyline annotation based on eight marks 
could identify them with very high resolution (S8 Fig). 
 
Since the known functional elements in the HBB region were better correlated with the 
annotations based on enhancer-associated marks than the annotations based on promoter-
associated marks, we further investigated if enhancer-associated annotations were also 
more enriched for GWAS signals using three large-scale GWAS that have strong signal 
enrichment in blood-specific functional regions (i.e. Crohn’s disease, Ulcerative Colitis, 
and Rheumatoid Arthritis; details of these three studies have been discussed in our 
manuscript). We analyzed these three GWAS using LD score regression along with its 53 
baseline annotations and GenoSkyline annotations of other 6 tissues. The enrichment 
results for blood-specific annotations based on promoter- or enhancer-associated marks 
are summarized in S12 Table. We	
  could	
  see	
  that	
  blood-­‐specific	
  annotations	
  based	
  on	
  
promoter-­‐	
  and	
  enhancer-­‐associated	
  marks	
  were	
  both	
  significantly	
  enriched	
  for	
  
GWAS	
  signals	
  for	
  all	
  three	
  diseases.	
  The	
  enrichment	
  in	
  annotations	
  based	
  on	
  
promoter-­‐associated	
  marks	
  was	
  consistently	
  less	
  significant	
  than	
  that	
  in	
  
annotations	
  based	
  on	
  enhancer-­‐associated	
  marks.	
  However,	
  the	
  fold	
  enrichment	
  
was	
  actually	
  substantially	
  stronger	
  in	
  the	
  annotations	
  based	
  on	
  promoter-­‐associated	
  
marks.	
  The	
  lower	
  significance	
  level	
  in	
  promoter-­‐mark-­‐based	
  annotation	
  was	
  likely	
  
due	
  to	
  its	
  lower	
  coverage	
  of	
  the	
  genome.	
  In	
  fact,	
  6.1%	
  of	
  the	
  genome	
  was	
  predicted	
  
to	
  be	
  functional	
  using	
  enhancer-­‐associated	
  marks	
  while	
  only	
  1.5%	
  was	
  predicted	
  to	
  
be	
  functional	
  based	
  on	
  promoter-­‐associated	
  marks. 
  
In summary, each single epigenetic mark was not sufficient for predicting functional 
DNA elements. Integrative annotations that combined multiple marks correlated well 
with the experimentally validated coding and non-coding functional elements in the HBB 
region. Moreover, annotations based on seven marks and annotations based on all eight 
marks were similar, showing that GenoSkyline is robust against a minor change in the 



selection of marks. Finally, annotations based on enhancer-associated marks had better 
prediction performance in the HBB region than functional scores based on promoter-
associated marks. Globally, annotations based on promoter-associated marks were still 
highly significantly enriched for GWAS signals, suggesting that these marks could 
provide additional insights to complex diseases. 
 
 
Several remarks on the proportion of functional genome 
 
33.3% of the genome was predicted to be functional based on a GenoCanyon score cutoff 
0.5, and the functional proportion was relatively stable across different chromosomes [1]. 
Since GenoCanyon score has a bimodal distribution, the functional percentage estimate 
was also robust against this cutoff choice. In this manuscript, we showed that the 
functional percentages range from 5% to 10% across seven tissue types and their union 
covers 22.2% of the genome. In this section, we investigate if functional regions in other 
tissue types could explain the gap between 22.2% and 33.3%.  
 
First, we applied the GenoSkyline framework to eight epigenetic marks for all 111 cells. 
Functionality score was calculated for each nucleotide on chromosome 22. 33.4% of 
chromosome 22 was predicted to be functional based on cutoff 0.5. This estimate of 
functional percentage was highly consistent with the estimate based on GenoCanyon 
annotation (38.3%) for chromosome 22. The remaining gap may be further explained by 
the non-tissue-specific annotation data included in the GenoCanyon model (e.g. 
conservation). 
 
Next, we defined an annotated category “Gap” that included all the regions that were 
predicted to be functional by GenoCanyon but showed no functionality in any of the 
seven GenoSkyline annotations. We then analyzed three large-scale GWAS (i.e. height, 
schizophrenia, and Crohn’s disease; details of these three studies have been discussed in 
the manuscript) using LD score regression along with its 53 baseline annotations, seven 
GenoSkyline annotations, non-functional genome based on GenoCanyon, and the “Gap” 
annotation defined above. The enrichment results for GenoSkyline, non-functional 
genome, and gap annotations are summarized in S13 Table. 
 
The “Gap” category was depleted for signals of schizophrenia and Crohn’s disease, and 
enriched for signals of height GWAS. None of these enrichment or depletion was 
significant. Since GS-brain and GS-blood annotations were highly significantly enriched 
for signals of schizophrenia and Crohn’s disease, respectively, the depletion in the “Gap” 
category showed that it most likely does not contain important functional elements for 
brain or blood tissue. Height is a trait that is known to be highly polygenic and hundreds 
of associated variants have been identified. It is not surprising to see the “Gap” category 
to be moderately enriched for height signals. Interestingly, the non-functional category 
based on GenoCanyon annotation was highly significantly depleted of GWAS signals in 
all three studies. The fold enrichment in non-functional genome was also consistently 
lower than that in the “Gap” category.   
 



In summary, we did two different analyses to see if the gap between GenoCanyon non-
tissue-specific annotations and GenoSkyline annotations of seven tissue types were due 
to functionality in other tissue types. First, we were able to fill in such a gap by 
integrating eight epigenetic marks for all 111 Roadmap cells. Second, the gap region was 
enriched for height GWAS signals and showed consistently stronger enrichment than the 
non-functional genome. These results showed that it is reasonable to interpret the gap 
between GenoCanyon and GenoSkyline as potential functional regions in other tissues.  
 
 
Several remarks on GSP score  
 
For GSP score calculation, we used the mean GS score of the surrounding 10,000 bases 
as the prior probability 𝑃(𝑍! = 1) for each SNP. This is because the nucleotide-level GS 
score may be insufficient for GWAS signal prioritization. In fact, each SNP in GWAS 
carries information of its nearby variants that are not genotyped or imputed. A better-
informed metric needs to measure the functional potential for the surrounding region of 
each SNP. We chose 10,000 bases as the window size, but no substantial difference in 
empirical performance was observed when changing the window size to 5,000 or 20,000. 
In our implemented GenoWAP software for SNP prioritization (available at 
http://genocanyon.med.yale.edu/GenoSkyline), the users are allowed to use their own 
annotation data. Therefore, the window size can be changed when necessary. Since the 
mean GS score of surrounding regions was used as the prior, our SNP prioritization 
approach is in fact a region-based tool. We emphasize again that it identifies regions of 
likely functionality and substantially improves the resolution of GWAS, but does not 
provide conclusive proof of functionality for any individual SNP or locus.  
 
In order to calculate the GSP score, we assumed that SNPs that are functional in a tissue 
not relevant to the phenotype would have similar p-value behavior to all other SNPs that 
are not relevant to the phenotype, which in turn behave similarly to SNPs that are not 
functional at all (see equation 7 in Methods). This assumption may not hold exactly due 
to some intrinsic differences between SNPs located in non-functional regions (Z=0) and 
those in non-specific functional (Z=1) and tissue-specific functional regions (ZT=1). As 
far as we are aware, the main possible contributing factor may be different linkage 
disequilibrium (LD) patterns in those regions with Z = 0 and those with Z = 1 or ZT=1. 
For example, if there is stronger LD in ZT = 1 regions, then the markers with ZD = 0 and 
ZT = 1 may have a different p-value distribution from those with Z = 0.  
 
In order to check if this is a serious issue, we compared the LD patterns in regions with Z 
= 0, Z =1, and ZT = 1 for multiple tissue types on chromosome 22. We downloaded the 
pre-calculated LD scores [2] for the 1000 Genomes European population from the LD 
score GitHub page (https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial). 
Based on cutoff 0.1 for GenoCanyon and GenoSkyline scores, we divided all the SNPs 
on chromosome 22 into tissue-specific functional, non-specific functional and non-
functional subcategories. The kernel density estimates of the two subgroups are plotted in 
S9 Fig. It can be seen that there is no substantial difference of LD score distributions 
between different categories. Therefore, it is reasonable to assume the LD patterns in 



regions with Z = 0, Z = 1, and ZT = 1 to be similar. Moreover, as ZD = 1 is a relatively 
small proportion of Z = 1, this assumption is likely to be a good approximation.  
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