

Supplemental Figure 1: The effect of cell size, cell number and half-life on mRNA mobility. The mRNA abundance model predictions for the effect of species abundance on mRNA mobility, and the saturation curve approximations of these are shown for simulations with varied cell size, cell number, and mRNA half-life characterized by the probability of decay, P(decay). Points are model predictions based on the calculation of the escape probability from a companion cell in the 3D cell simulations described in the main text. The curves correspond to a fitted saturation equation for a transcript being mobile as explained in the Methods section. This shows that although these unknown parameters all influence mobility, the effects can be well approximated by a simple saturation curve, thus reducing the number of unknown parameters in the model.

Supplemental Figure 2: The effect of nucleus position and size on mRNA mobility. The abundance model predictions for the effect of species abundance on mRNA mobility and the saturation curve approximations of these are shown for simulations with varied nucleus position and size. Variation in nucleus size and position was incorporated in the abundance model by modifying the initial position of the simulated mRNA molecule. Starting positions were uniformly sampled on the surface of a sphere, representing the nucleus, positioned as shown, and of stated radius. Points are model predictions based on the calculation of the escape probability from a companion cell in the 3D cell simulations described in the main text. The curves correspond to a fitted saturation equation for a transcript being mobile as explained in the Methods section. This shows that although these unknown parameters all influence mobility, the effects can be well approximated by a simple saturation curve, thus reducing the number of unknown parameters in the model.

Supplemental Figure 3: The effect of varied probability of passing through the cell surface on mRNA mobility. The abundance model predictions for the effect of species abundance on mRNA mobility and the saturation curve approximations of these are shown for simulations with varied probability of passing through the cell surface upon contact with it. With decreased probability of passing through the surface, K was seen to increase, and n decrease. Points are model predictions based on the calculation of the escape probability from a companion cell in the 3D cell simulations described in the main text. The curves correspond to a fitted saturation equation for a transcript being mobile as explained in the Methods section. This shows that although these unknown parameters all influence mobility, the effects can be well approximated by a simple saturation curve, thus reducing the number of unknown parameters in the model.

Supplemental Figure 4: The abundance distribution of mobile and non-mobile transcripts in cells proximal to the vasculature. Abundance data for the bundle sheath from <u>Aubry et al. (2014</u>), for the companion cell from <u>Mustroph et al. (2009</u>), mobility classification data from <u>Thieme et al. (2015</u>).

Supplemental Figure 5: The predicted effect of half-life and abundance on transcript mobility. For varied transcription rates and half-lives, transcript abundance and mobility was simulated using the abundance cell model. Transcripts with longer half-lives can be seen to be more mobile than shorter transcripts. However, the effect of half-life on mobility can be seen to interact with transcript abundance, such that the threshold half-life, and sensitivity to changes in half-life varies with species abundance.

Supplemental Figure 6: The contributions of half-life and abundance to mRNA mobility. The relationship between experimental half-life, abundance and mRNA species mobility is shown, and the predicted regions of mobility, and non-mobility, generated using a logistic regression classifier. Abundance and half-life were both normalized such that the mean value is 0 and standard deviation is 1. The boundary between the predicted regions has separable abundance and half-life components.

Supplemental Figure 7: Detected transcript abundance as a function of length in the producing tissues. A small but statistically significant positive correlation indicates that there is a slight detection bias favoring longer mRNA transcript. Data taken from <u>Thieme et al. (2015</u>), rho and p-values were calculated using Spearman's rank. The moving average (red) was calculated using a window size of 6000.

Supplemental Table 1: List of low abundance mobile transcripts present in the data set of <u>Thieme et al. (2015</u>). To define low abundance we took a threshold based on Figure 2A, In(abundance) < 1.

Transcript ID	Gene Symbol	Gene Model Description
AT1G16160.1	WALL ASSOCIATED KINASE-LIKE 5	WAK-like kinase
	(WAKL5)	
AT1G21250.1	CELL WALL-ASSOCIATED KINASE	cell wall-associated kinase, may function as a
	(WAK1)	signaling receptor of extracellular matrix
		component such as oligogalacturonides
AT1G32060.1	PHOSPHORIBULOKINASE (PRK)	phosphoribulokinase (PRK)
AT1G42970.1	GLYCERALDEHYDE-3-PHOSPHATE	chloroplast localized glyceraldehyde-3-
	DEHYDROGENASE B SUBUNIT	phosphate dehydrogenase
-	(GAPB)	
AT1G52000.1		Mannose-binding lectin superfamily protein
AT1G52400.1	BETA GLUCOSIDASE 18 (BGLU18)	member of glycosyl hydrolase family 1,
		located in inducible ER bodies, required in
		inducible ER body formation
AT1G56510.1	WHITE RUST RESISTANCE 4	TIR-NB-LRR protein that confers resistance
	(WRR4)	to four races of Albugo candida
AT1G61520.1	PHOTOSYSTEM I LIGHT	PSI type III chlorophyll a/b-binding protein
	HARVESTING COMPLEX GENE 3	(Lhca3*1)
AT40040404	(LHCA3)	
AT1G61610.1		S-locus lectin protein kinase family protein
AT1G65800.1	RECEPTOR KINASE 2 (RK2)	encodes a putative receptor-like
		serine/threonine protein kinases that is similar
AT4000700.4		to brassica self-incompatibility (S) locus
AT1G69730.1		Vvall-associated kinase family protein
AT1G75920.1		GDSL-like Lipase/Acylnydrolase supertamily
AT0005070 4		protein Encedes studies deserbeut/less complex.
A12G35370.1		Encodes glycine decarboxylase complex H
AT2C44940 4		protein
A12G44040.1	ELEMENT BINDING EACTOR 13	response factor) subfamily R 3 of ERE/AR2
	(EDE12)	transcription factor family
AT3C02620 1	(ERF13)	Plant stearoyl acyl carrier protein desaturase
A13602020.1		family protein
AT3C08040.2	LIGHT HARVESTING COMPLEX	L hch/ 2 protein involved in the light
A10000340.2		harvesting complex of photosystem II
AT3C22121 1		Potential natural antisense gene locus
A10022121.1		overlaps with AT3G22120
AT3G26610.1		Pectin lyase-like superfamily protein
AT3G44860 1	FARNESOIC ACID CARBOXYL-O-	Encodes a famesoic acid carboxyl-O-
///0044000.1	METHYLTRANSFERASE (FAMT)	methyltransferase
AT3G46780 1	PLASTID TRANSCRIPTIONALLY	plastid transcriptionally active 16 (PTAC16)
///0040/00.1	ACTIVE 16 (PTAC16)	
AT3G49110 1	PEROXIDASE CA (PRXCA)	Class III peroxidase Perx33
AT3G50300 1		HXXXD-type acyl-transferase family protein
AT3G55800 1	SEDOHEPTULOSE-	Encodes the chloroplast enzyme
	BISPHOSPHATASE (SBPASE)	sedoheptulose-1.7-bisphosphatase
		(SBPase), involved in the carbon reduction of
		the Calvin cycle
AT3G61270.1		best Arabidopsis thaliana protein match is:

		downstream target of ACI 15.2	
		(TAIR:AT2G45830.1)	
AT4G11000.1		Ankyrin repeat family protein	
AT4G13130.1		Cysteine/Histidine-rich C1 domain family	
		protein	
AT4G13620.1		encodes a member of the DREB subfamily A-	
		6 of ERF/AP2 transcription factor family	
AT4G14630.1	GERMIN-LIKE PROTEIN 9 (GLP9)	germin-like protein with N-terminal signal	
		sequence that may target it to the vacuole,	
		plasma membrane and/or outside the cell	
AT4G15160.1		Bifunctional inhibitor/lipid-transfer	
		protein/seed storage 2S albumin superfamily	
		protein	
AT4G19170.1	NINE-CIS-EPOXYCAROTENOID	chloroplast-targeted member of a family of	
	DIOXYGENASE 4 (NCED4)	enzymes similar to nine-cis-epoxycarotenoid	
		dioxygenase	
AT4G23150.1	CYSTEINE-RICH RLK (RECEPTOR-	Encodes a cysteine-rich receptor-like protein	
	LIKE PROTEIN KINASE) 7 (CRK7)	kinase	
AT4G26050.1	PLANT INTRACELLULAR RAS	Encodes PIRL8, a member of the Plant	
	GROUP-RELATED LRR 8 (PIRL8)	Intracellular Ras-group-related LRRs	
		(Leucine rich repeat proteins)	
AT4G27440.1	PROTOCHLOROPHYLLIDE	light-dependent NADPH:protochlorophyllide	
	OXIDOREDUCTASE B (PORB)	oxidoreductase B	
AT4G29690.1		Alkaline-phosphatase-like family protein	
A14G31100.1		wall-associated kinase, putative	
A14G31354.1		This gene encodes a small protein and has	
		either evidence of transcription or purifying	
AT40000404		selection	
AT4G33610.1		glycine-rich protein	
AT4G37220.1		Cold acclimation protein WCOR413 family	
AT5G14650.1		Pectin lyase-like superfamily protein	
A15G25130.1		putative cytochrome P450	
	SUBFAMILY B, POLYPEPTIDE 12		
ATEC 25090 2		Muraainaaa (thiadhuaaaida dhuaabudralaaa)	
A15G25960.2	(TGG2)	appe involved in alucosinoloate metabolism	
AT5C26260 1	(1002)	TPAE like family protein	
AT5G26280.1			
AT5G20200.1			
AT5G20500.1			
AT5G30900.1			
AT5C46220.4			
A15G40330.1	FLAGELLIN-SENSITIVE 2 (FLS2)	kinase that is expressed which iterally	
AT5C55020.1		aligopontido transportor	
A15G55930.1	(OPT1)		
AT5G60760.1		P-loop containing nucleoside triphosphate	
		hydrolases superfamily protein	

Supplemental Table 2: List of putative motifs identified in the low abundance mobile transcripts. The motifs were enriched in the mobile vs. non-mobile low abundance transcripts. See Supplemental Table 1 for the list of transcripts. Data from Thieme et al. (2015).

Enriched Motif	E-value	P-value
AGTWCAAC	2.8e-2	7.6e-7
ATGGTTTG	3.2e-2	8.7e-7
CCCACS	4.7e-2	1.3e-6