

Supplemental Figure 1. Amino Acid Sequence and Structural Predictions of Rice LIR1.

The conserved LIR1 motifs are underlined (red) and the conserved Cys residues are indicated by black arrows. The secondary structure prediction was performed by PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred). H stands for helix, C for coil, and E for strand. The height of the blue bars for each amino acid represents the level of confidence of each prediction.

Supplemental Figure 2. Characteristics of Rice tic62 Plants.

(A) Genomic structure of *TIC62*. Gray boxes denote exons, black lines introns, and white boxes 5'- and 3'untranslated regions. The T-DNA insertion site is indicated by a triangle. Binding sites of *TIC62* genespecific primers (OsTIC62-F1, OsTIC62-R1, OsTIC62-R2) and T-DNA-specific left border primer (LB2) used for screening of *tic62* homozygous plants are depicted.

(B) PCR analysis of WT and *tic62* using genomic DNA (upper panel) and cDNA (lower panel) as PCR templates, respectively, with the primers indicated in (A).

(C) Phenotypes of WT, tic62, and lir1 plants grown in hydroponic culture for 35 d. Bar = 10 cm.

(D) Fresh weights of 35 d-old WT, tic62, and lir1 plants grown in hydroponic culture.

(E) Immunoblot of SDS-PAGE of WT and *tic62* total leaf extracts; 10 µg protein was loaded onto the gel and immunodetected with anti-TIC62 antibody. The 70 kDa major TIC62 band is indicated by a red star and the putative TROL band by a question mark.

(F) BN PAGE analysis of WT, *tic62*, and *lir1* plants after 4 h in the dark. The left panel shows the thylakoid protein complexes, and the middle and right panels show immunoblots using anti-TIC62 and LFNR antisera, respectively; 5 μg chlorophyll was loaded onto the gel. PSII-D/M, PSII dimers/monomers; PSI-M, PSI monomers; LHCII-T, LHCII trimers.

Supplemental Figure 3. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein Interactions in *Nicotiana tabacum*.

Bimolecular fluorescence complementation (BiFC) analysis for interaction between rice LIR1 and LFNRs. C- and N-terminal fragments of yellow fluorescence protein (YFP^C and YFP^N) were fused to LIR1 and LFNR1 or LFNR2, respectively. Combinations of plasmids (indicated on the left panel) were transiently transformed into leaves of *Nicotiana tabacum*. RBCS (ribulose bisphosphate carboxylase small chain, LOC_Os12g19470) serves as a chloroplast localized negative control. Presence of YFP signal (green) indicates reconstitution of YFP through protein interaction of the tested pairs. Positions of the chloroplasts are indicated by red autofluorescence (red). The scale bar represents 20 µm.

Supplemental Figure 4. Ò-^&o4(1 - ÄÖVV/Áse) å ÄÖãe4(ãå^Á(1) Ás@ÁQ(c*¦æ8cā[1) ÁÓ^ç ^^} ÁÜ38^ÁŠOÜFÁ æ) å ÅŠØÞÜÈ

(B)Á/@Á/ææç^Á? | ææç ^ A ; chææt Á, - ÁSØÞÜEŠÚÜFÁ; - ÁS[at { `}[] | ^ & a at • a k ACEEÉ/@Á | ^ |ææç ^ A? | ææç ^ A ; dææt Á, - ÁSØÞÜEŠÚEFÆ; Ka ^ a ^ a kæ ÁQÚÁ; - ÁSØÞÜEÆG] ` cá, - ÁSØÞÜEQÚÁ; - ÁSØÞÜEÐÉ aj] ` cá, - ÁSÜEDÉ/@ Á? | æ@ ^ } cá, - ÁSØÞÜA; a ko Azet Á aj] ` cá, - ÁSÜEDÉ/@ Á? | æ@ ^ } cá, - ÁSØÞÜA; a ko Azet Á aj] ` cá, - ÁSÜEDÉ/@ Á? | æ@ ^ } cá, a sø A = UA; a ko Azet Á a at ASØDEDÉ/@ Á? | æ@ A = A Ø = ASØPA; a ko Azet Á a at ASØDEDÉ/@ Á? | æ@ A = A ASØPEDÉ/ A = ASØPA; a ko A = A ASØPEDÉ/A A = ASØPEDÉ/ A = A

Supplemental Figure 5. Comparison of the Two Rice LFNR Isoforms Between WT and *lir1* Plants. Representative native-PAGE gels of soluble leaf extract and thylakoid membranes isolated from plants treated for 4 h in the dark (D) or under standard growth light (GL; 1000 μ mol photons m-2 s-1). Proteins were immunodetected with LFNR antibodies. The dilution series (0.5x to 2x) was made with the corresponding control (WT GL) in each gel to avoid possible saturation of the immunodetection. 1x loading = 10 μ g protein

Supplemental Figure 6. Phylogenetic Analysis of LIR1.

The aligned LIR1 amino acid sequences from a variety of plant species were exported into MEGA 4. The phylogenetic tree was constructed using the minimal evolution method with 1000 bootstrap tests. The numbers at the nodes refer to bootstrap support percentage.

Zm-LIR1	: QIDY <mark>S-SSV</mark> SVFP <mark>M</mark>	EAC <mark>DL</mark> LGG <mark>D</mark> A	CNG-PMFP	AKPASAAAAASRSVVG	VDRDYL	SYDEP-KTVFPGE	ACDDLGGEFCEAPYODGV
Sb-LIR1	: EVDY <mark>S-SSF</mark> SVFP <mark>M</mark>	EAC <mark>DL</mark> LGG <mark>D</mark> A	CIG-KMFP	AKLAAAAPEASRRVDA	VERDYL	S <mark>Y</mark> DGP-KT VF PGE	ACDDLGCEFCEAPYMDGV
Os-LIR1	: EVDY <mark>S-SNI</mark> SVFP <mark>M</mark>	EAC <mark>DL</mark> IGGEA	CNV-QMYP	AKLSSSAAVAVSRAAA	EEVDRDYL	SYDEP-TIVFPER	ACDDLGCEFCKAT
Pt-LIR1	: EVDY <mark>S-SDV</mark> SVFP <mark>M</mark>	EAC <mark>DL</mark> VGGEA	CDAGEMYP	TKPGDSAPAVAARTSP	EEVEREYL	SYDEA-KTVFPGE	ACDDLGCEFCEAPYQTGV
Lp-LIR1	: EVDY <mark>S-SDV</mark> SVFP <mark>M</mark>	EAC <mark>DL</mark> VG VE A	CEAAEMYP	TKLSDSASAAAA-SKV	EEVEREYL	S <mark>YDEA-KTVF</mark> PGE	ACDDLGCEFCEAPYQTGV
Bd-LIR1	: EVDY <mark>S-SSV</mark> SVFP <mark>M</mark>	EAC <mark>EL</mark> VGGEA	CEAPEMYP	TKLSAQDSSSSSGSSPAVAGT	SVVEREYL	S <mark>YDDP-KTVF</mark> PGE	ACDDLGGEFCEAPYQTGV
Hv-LIR1	EADYS-SNVSVFPM	EAC <mark>DL</mark> VGGEA	CDA-QMYP	TKLGGGAAAAAVARA	PEVEREYL	A <mark>Y</mark> DEP-KTVFPDE	ACDDLGGEFCEAPYQT
Wa-LIR1-1	: TVDY <mark>S-SST</mark> SVFPA	EACETLGG <mark>D</mark> A	CAA-NVFP	TKLPPANNSANANKPSS	EQIDREYL	D <mark>Y</mark> SEP-RTVFPDE	ACDDLGG <mark>D</mark> FC <mark>KPE</mark> YQ KA -
Ptr-LIR1-1	: TVDY <mark>SSFTS-VFP</mark> A	EACETIGGEA	CNV-EMYP	VKLKPDARS-TTPSTS	EQIDREYL	E <mark>Y</mark> NSA-KTVFLDE	ACDDLGGEFCDPGYQG
Ptr-LIR1-2	KETSGKR-HLNT	EACETIGGEA	CDV-EMYP	VKLKPDARN-TPRSTS	EQIDREYL	E <mark>YNSP-KKVF</mark> QEF	ACDDLGGEFCDPGYQG
Rc-LIR1-1	: TVDY <mark>SSVVS-</mark> VFPA	EAC <mark>ET</mark> IGGEV	CDV-DMYP	VKLKPEAES-TTAASTAT	EHIDREYL	Q <mark>YDSP-KTVF</mark> LEF	ACDDLGGEFCDPEYQRP-
St-LIR1	: TVDY <mark>SSMNS</mark> SVFPA	EAC <mark>EI</mark> IGGEA	CDV-EMYP	TKPKSTPSATASSNTPST	ESVDREYL	A <mark>YNEP-KTVFLS</mark> E	ACDDLGCEFCEADYQTGV
S1-LIR1	: TVDY <mark>SSMNS</mark> SVFPA	EACETIGGET	CDV-EMYP	TKPKSTPSSKTLSM	ESVDREYL	A <mark>YNEP-KTVFLS</mark> E	ACDDLGCEFCEAKYQTGV
Can-LIR1	: TVDY <mark>SSMTS</mark> SVFPA	EACETIGGEA	CDV-EMYP	TKPKSAENTTKTQVS	ESVDREYL	E <mark>YNEP-KTVF</mark> LGE	ACDDLGCKFCEAEYQ <mark>NGV</mark>
Vv-LIR1-1	: TVDY <mark>SSTTS-</mark> VFPA	EAC <mark>EV</mark> VGGEA	CDA-EMYP	VKLKAEAGNPPARSAT	EGVDREYL	E <mark>YNSP-KTVF</mark> PGE	ACDDLGGEFCEPEYQEGV
Cs-LIR1-1	: TVDY <mark>SSMSS-</mark> VFPA	EAC <mark>DT</mark> VGGEA	ODV-EMYP	VKLKPEAXKGNSVT	EPVEREYL	Q <mark>Y</mark> DSP-KT <mark>VF</mark> PAF	ACDDLGGEFCDPEYQKGV
Cme-LIR1	:S-VFPA	EAC <mark>DT</mark> VGGEA	CDV-EMYP	VKLKPEAKKGSSVT	EPVEREYL	Q <mark>Y</mark> DSP-KTVFPAE	ACDDLGGEFCDPEYQKGV
Cm-LIR1	: TFDY <mark>N-S</mark> AFSVFPA	EACEVIGG <mark>D</mark> A	CSA-EMYP	AKLKPEAKN-DTST-TAS	EPIEREYI	E <mark>Y</mark> NDT-NTVFKGE	ACDDLGGTFCEREYQRGV
Vv-LIR1-2	: TVDY <mark>N-SMT</mark> SVFPA	EAC <mark>DV</mark> IGGEA	CLA-DCYP	VRLKQEARN-RAAR-TAS	EVTERDYY	E <mark>Y</mark> NDA-KT VF RAE	ACDDLGGLFCEREYQRGV
Rc-LIR1-2	: TVDY <mark>S-SVI</mark> SVFPA	EACETLGG <mark>D</mark> A	CLA-NIFP	VKLEARNDA-AAAR-IAS	EPIEREYL	E <mark>Y</mark> NDA-KT VF CAE	ACDDLGGEFOSREYQRGV
Cp-LIR1	: TVDY <mark>S-SAI</mark> SVFPA	EACETIGG <mark>D</mark> A	CLA-DIFP	VKLNPEA-SSKR-IAS	EPFDRDYL	E <mark>Y</mark> NDP-KT <mark>VF</mark> RGE	ACDDLGGEFOSPDYERGA
Gm-LIR1-1	: TVDY <mark>N-SAF</mark> SVFPA	EACETVGGEA	CMA-EMYP	TKLQPEAKTPR-VVT	ENVEREYL	EYDDP-KTVFRGE	ACDDLGGTFCETEYQKGV
Gm-LIR1-2	: TVDY <mark>N-SAF</mark> SVFPA	EACETVGGEA	CMA-EMYP	VKLQPEAKTPR-VVT	ENVEREYL	E <mark>YDDP-</mark> KT VF RGE	ACDDLGGTFCETEYQKGV
Car-LIR1	: TVDY <mark>N-SAF</mark> SVFPA	EACETVGGEA	CLA-DMYP	VKLQPEAKN-DTPKAS	ENIEREYL	D <mark>Y</mark> NDP-KT <mark>VF</mark> QAE	ACDDLGGTFCEPDYQKGV
Mt-LIR1	: TVDY <mark>N-SAF</mark> SVFPA	EACETVGG <mark>D</mark> A	CLA-DMNP	VKLQPEARN-DTPKTAAS	GNIEREYL	D <mark>YNEP-KTVE</mark> QAE	ACDDLGGAFCEPDYQKGV
Psa-LIR1	TVNY <mark>N-SAF</mark> SVF <mark>QL</mark>	EACEREGGEA	CLA-DMYP	VKLQPERSN-DAPKTAAS	ENIDRDYL	E <mark>Y</mark> NDP-KT VF QAE	ACDDLGGTFCEPDYQKGV
Th-LIR1	: TVDY <mark>N-SLL</mark> SVFPA	EACETISCYA	CSA-DIYP	VKLDTKP-VSRPVATT	EPVDREYL	EYNNP-KTVFCAE	ACDDLGGEFCEPDYQKDV
Br-LIR1	: TVDY <mark>NDSPL</mark> SVFPA	EACEVISCYA	CSA-DIYP	VKLETKP-VSPPVAS	EPVDREYI	E <mark>YNNP-</mark> KT VF PAE	ACDDLGGEFCEPDYQKDV
Al-LIR1	: TVDY <mark>NSSLL</mark> SVFPA	EACEVISCYA	CSA-DIYP	VKLDTKP-VSRPVAS	EPVDREYE	E <mark>YNNP-</mark> KT VF REE	ACDDLGGEFCEPGYQKDA
At-LIR1	: TVDY <mark>NSSIL</mark> SVFPA	EACEVISCYA	CSA-DIYP	VKLDTKP-VSRPVAS	EPVDREYE	E <mark>YNSP-</mark> KT VF REE	ACDDLGGEFCEPDFCKDA
Psi-LIR1-1	: TVDY <mark>dssak</mark> svfpa	EAC <mark>DT</mark> VGGEA	CEGEIGA	VTLKVDSP-PTSSPGVG	IDREYV	E <mark>Y</mark> ASELKT VE PGE	ACDDLGGEFCEPEYQSGV
Psi-LIR1-2	: TVDY <mark>dssak</mark> svfpa	EAC <mark>DT</mark> VGGEA	CEGEIGA	VTLKVDLP-PTSSPGVG	IDREYV	E <mark>Y</mark> ASEQKT VE PGE	ACDDLGCEFCEPEYQSGV
Pa-LIR1	: TVDY <mark>DSSAK</mark> SVFPA	EAC <mark>DT</mark> VGGEA	CEGEIGA	VTLKVDSP-PTSSPGVG	IDREYV	E <mark>Y</mark> ASEQKT VE PGE	ACDDLGCEFCEPEYQSGV
Pp-LIR1	: TVDY <mark>DSS</mark> AKSVFPA	EAC <mark>DT</mark> VGGEA	CEGEIGV	VTLKADSPSPSSPPAEG	VDREYV	E <mark>Y</mark> ASEKKT VE PGE	ACDDLGGDSASQNIRVAL
Sle-LIR1	: YVDY <mark>AG-NQ</mark> SVFPA	EACEELGG <mark>DS</mark>	CAAEGVGP	VKLNPTTPPKLASAAQKK	QQPEREYV	D <mark>YESGN</mark> KT VE PGE	ACDDLGGEFCEGDYQKDV
Cat-LIR1	YVEYDKQDESVFPD	EAC <mark>DD</mark> LGGEF	CEPDWREKNNVGK	VESEAQPRQRNNSSK	DEPDRDYV	NYESSNKTVEPGE	ACDDLGGEFCEPDYQEGV
Cv-LIR1	YIGYDP-KKTVFPA	EAC <mark>DE</mark> LGGEF	ONVEGVGE	VNPQTSGAAAEEQPQAAPTGMFASIFGKG	AAEIPDREYV	QYDST-KTVEPGE	ACDDLGGEFCAPDFQEGV
Tle-LIR1	YVNY <mark>TG-KO</mark> SVFPA	EACEDVGGDA	OVVEGVGP	VKPKAAVAKEAPKAAEG	PDREYV	DYVTEKKTVE PGE	ACTELGGEFCEEDFQKGV
Ss-LIR1	YVDYEG-RNSVFPA	EACEDTC-EN	CDAEGFK	VLPSASATPVTPAAQKPG	IDREYE	EYAGS-KTVEPGE	ACEELGGEFODPEFOEGV
Bt-LIR1	YVDYEG-RSSVFPA	EACEETE-EG	DAEGLFK	ALPRASATPIA-AAOKPG	PDREYE	EYKGA-KUVEPGI	ACDELCCEFCEPEFCEGV

Supplemental Figure 7. Alignment of LIR1 Amino Acid Sequences.

Alignment of LIR1 domain amino acid sequences from the plant species shown in Supplemental Figure 6. Blue frames indicate angiosperms, orange frames gymnosperms (two isoforms of *Picea sitchensis*, *Picea abies*, *Pinus pinaster*) and green frames lower plants (moss, liverwort and green algae). The four EAC motifs are underlined in red. The red frames depict the sequences of *Brassicaceae* (*Arabidopsis thaliana*, *Arabidopsis lyrata*, *Thellungiella halophila*, *Brassica rapa*), which differ from the conserved motif. Zm denotes *Zea mays*, Sb *Sorghum bicolor*, Os *Oryza sativa*, Pt *Puccinellia tenuiflora*, Lp *Lolium perene*, Bd *Brachypodium distachyon*, Hv *Hordeum vulgare subsp*, Wa *Wolffia australiana*, Ptr *Populus trichocarpa*, Rc *Ricinnus communis*, St *Solanum tuberosum*, SI *Solanum lycopersicum*, Can *Capsium* annuum, Vv *Vitis vinifera*, Cs *Cucumis sativus*, Cme *Cucumis melo subsp*, Cm *Citrofortunella microcarpa*, Cp *Carica papaya*, Gm *Glycine max*, Car *Cicer arietinum*, Mt *Medicago truncatula*, Psa *Pisum sativum*, Th *Thellungiella halophila*, Br *Brassica rapa*, Al *Arabidopsis lyrata*, At *Arabidopsis thaliana*, Psi *Picea abies*, Pp *Pinus pinaster*, Sle *Sphagnum lescurii*, Cat *Chlorokybus atmophyticus*, Cv *Chara vulgaris*, Tle *Takakia lepidozioides*, Ss *Schistochila sp*, and Bt *Bazzania trilobata*.

А

Supplemental Figure 8. Interaction between LIR1 and LFNR from Maize, Soybean, and Cucumber. Yeast twohybrid analysis of interactions between LIR1 and LFNR proteins from *Zea mays*, *Glycine max*, and *Cucumis sativus*. Yeast lines harboring either the empty control plasmids (AD; activation domain, BD; bait domain) or plasmids containing the fusion constructs (AD-)Zm-/Gm-/Cs-LIR1 or (BD-)Zm-/Gm-/Cs-LFNR1/2 were grown on synthetic medium supplied with dextrose (SD) in the absence of Trp and Leu (SD/-LT, left panels) and on SD medium in the absence of Trp, Leu, His, and Ade (SD/-LTHA, right panels). Yeast cells were incubated until OD600=1, diluted 10 and 100-fold, and grown on culture medium for 3 d.

Supplemental Figure 9. Characteristics of Arabidopsis lir1 Plants.

(A) Genomic structure of Arabidopsis *LIR1*. Gray boxes denote exons, black lines introns, and white boxes 5'- and 3'-untranslated regions. The insertion site of SALK_024728c (*lir1*) is indicated by a triangle. The binding sites for *LIR1* gene-specific primers (AtLIR1-F, AtLIR1-R) and T-DNA-specific left border (Salk-LBb1) used to screen *lir1* homozygous plants are depicted.

(B) PCR analysis of WT and *lir1* using genomic DNA as PCR template with the primers indicated in (A). **(C)** and **(D)** Phenotypes of WT and *lir1* plants in the vegetative growth (C) and reproductive growth (D) stages. Bars = 10 cm.

(E) and (F) Electron transfer rate (ETR) of PSI (D) and PSII (E) of WT and *lir1* plants under different actinic light intensities. Bars represent means ± s.d.

(G) Nonphotochemical quenching (NPQ) of WT and *lir1* plants under different actinic light intensities. Bars represent means ± s.d.

(H) Photosynthetic rates of WT and *lir1* plants at 150 µmol photons m⁻² s⁻¹.

(I) Immunoblot analysis of WT, *tic62*, *trol*, and *lir1* plants; 10 µg total leaf extract or thylakoid proteins was loaded onto the SDS gel and immunolabeled with TIC62 antibody. Coomassie Brilliant Blue (CBB) staining was used to verify equal loading of the gel.

Supplemental Figure 10. Interaction Test between Rice LIR1 and TIC62 by Yeast Two-Hybrid Assay. Yeast lines harboring either the empty control plasmids (AD; activation domain, BD; bait domain) or plasmids containing the fusion proteins (AD-LIR1, AD-LFNR2 or BD-TIC62) were grown on synthetic medium supplemented with dextrose (SD) in the absence of Trp and Leu (SD/-LT, left panels) and on SD medium in the absence of Trp, Leu, His, and Ade (SD/-LTHA, right panels). Yeast cells were incubated until OD₆₀₀ = 1, diluted 10 and 100-fold, and grown on culture medium for 3 d. The interaction test between LFNR2 and TIC62 was used as a positive control.

Supplemental Figure 11. The CBB-Stained Gels of All Purified Proteins from *Escherichia coli* Used in this Research.

(A) to (G) CBB staining of purified GST-LIR1 (A), LIR1-His (B), His-LFNR1 (C), His-LFNR2 (D), His-TIC62Ct (E), GST-TIC62 (F) and GST (G) from *E.coli*. The red rectangle indicates the relevant purified proteins. After elution, 3 μ L purified proteins were loaded in each well. S denotes the supernatant after ultrasonication of bacteria, T denotes the total proteins of bacteria, and E1 to E5 denote proteins of the first, second, third, fourth or fifth elution, respectively.

Supplemental Table 1. List of LC-MS identified unique peptide fragments in the 35 kDa band from coimmunoprecipitation.

Protein	UPC	Cover	Peptide Sequence	MH+	XC	∆Cn	lons
		%					
LFNR2	14	45.58	K.DGIDWADYK.K	1083.132	2.7849	0.3096	14 16
Os06g01850		%	K.DGIDWADYKK.Q	1211.305	2.489	0.3468	15 18
			K.DNTYVYMCGLK.G	1364.543	2.8134	0.2746	17 20
			K.DPNANIIMLATGTGIAPFR.S	1973.286	4.5745	0.5426	24 36
			K.EMLMPK.D	748.9782	2.0418	0.1154	8 10
			K.GIDDIMVSLAAK.D	1233.46	3.8084	0.4442	18 22
			K.GVCSNFLCDLKPGSDVK.I	1897.106	2.4579	0.3749	15 32
			K.HDEGVVTNK.Y	999.0601	2.5856	0.5069	13 16
			K.ITADDAPGETWHMVFSTEGEIPYR.E	2723.955	3.8867	0.5037	30 92
			K.KHDEGVVTNK.Y	1127.233	2.557	0.2475	13 18
			K.RLVYTNDQGEIVK.G	1535.727	2.9613	0.2067	16 24
			R.EGQSIGVIADGVDK.N	1388.506	3.1348	0.4238	18 26
			R.LVYTNDQGEIVK.G	1379.584	2.9499	0.1002	15 22
			R.MAEYKEELWELLK.K	1682.962	3.3502	0.3737	18 24
LFNR1	15	50.00	K.DGIDWLDYKK.Q	1253.385	2.4642	0.4864	14 18
Os02g01340		%	K.DNTYVYMCGLK.G	1364.543	2.8134	0.2746	17 20
			K.DPNATIIMLGTGTGIAPFR.S	1946.26	4.4318	0.3195	22 36
			K.EMLMPK.D	748.9782	2.0418	0.1154	8 10
			K.GIDDIMIDLAAK.D	1275.497	3.6524	0.3802	18 22
			K.GVCSNFLCDLKPGSDVK.I	1897.106	2.4579	0.3749	15 32
			K.KQVDGVVTNK.Y	1088.24	2.5345	0.3719	13 18
			K.RLVYTNDQGEIVK.G	1535.727	2.9613	0.2067	16 24
			R.EGQSIGVIPDGIDK.N	1428.57	2.7549	0.137	16 26
			R.FRLDFAVSR.E	1111.278	3.0978	0.2028	13 16
			R.ITGDDAPGETWHMVFSTDGEIPYR.E	2695.901	3.1482	0.2326	22 46
			R.LVYTNDQGEIVK.G	1379.584	2.9499	0.1002	15 22
			R.LYSIASSAIGDFADSK.T	1645.792	3.1821	0.5452	19 30
			R.MAEYKDELWELLKK.D	1797.108	4.1151	0.3621	29 52
			R.MKEIAPER.F	974.1603	2.459	0.2446	13 14

Supplemental Table 2. List of LC-MS identified unique peptide fragments in the 25 kDa band from coimmunoprecipitation.

Protein	UPC	Cover	Peptide Sequence	MH+	XC	Δ Cn	lons
		%					
LIR1	5	41.41	K.LSSSAAVAVSR.A	1048.176	1.9954	0.3605	10 20
Os01g01340		%	R.AAAEEVDR.D	860.8923	1.9482	0.2318	8 14
			R.AAAEEVDRDYLSYDEPTTVFPEEAC	3901.05	4.2106	0.5681	33 132
			R.DYLSYDEPTTVFPEEACDDLGGEFC	3059.18	3.0163	0.4019	19 50
			R.SLQIQAPR.R	913.0567	2.0658	0.2043	11 14

UPC: (Unique peptide count) the count of unique peptide sequences associated with specific protein. Cover %: protein's sequence coverage. The fields enumerated for each unique peptide include sequence, MH+ (the molecular weight of the peptides), XC (Xcorr, the cross-correlation value), Δ Cn (the change in cross-correlation), lons (the ion value = dividing the number of matched ions by the total number of ions).

Purpose	Primer name	Primer sequence				
Os-LIR1 CRISPR	OsLIR1-CRISPR-F	GTGTGGGGCGCAGCCTGCAGATTC				
	OsLIR1-CRISPR-R	AAACGAATCTGCAGGCTGCGCCCC				
	pOsLIR1-EcoR I-F	CGGAATTCTCAGCATGGAGCCCAACCTCCCGTC				
	pOsLIR1-Kpn I-R	GGGGTACCCTTCTTCTTCTTCTTCTTCTTCTT				
F OS-LIRT. US-LIKT-GFF	OsLIR1-Kpn I-F	GGGGTACCATGCAGACCGCTGCTAGCAGTG				
	OsLIR1-Xba I-R	GCTCTAGAGGTGGCCTTGCAGAACTCT				
	OsACTIN-qRT-F	CAACACCCCTGCTATGTACG				
GRI-PCR	OsACTIN-qRT-R	CATCACCAGAGTCCAACACAA				
DT DOD	OsLIR1-qRT-F	CTGCGGAGGTGGACTACAG				
qRI-PCR	OsLIR1-qRT-R	AGAGCTTGGCCTCTGGGTA				
	GFP-qRT-F	TATATCATGGCCGACAAGCA				
qRT-PCR	GFP-qRT-R	GATGTTGTGGCGGATCTTG				
qRT-PCR	Flag-qRT-F	AGCTTATCGATACCGTCGAG				
_	OsLIR1-EcoR I-F	CGGAATTCATGCAGACCGCTGCTAGCAGTG				
GST-Os-LIR1	OsLIR1-Xho I-R	CCGCTCGAGTCAGGTGGCCTTGCAGAACTCT				
	OsLIR1-Kpn I-F	GGGGTACCATGCAGACCGCTGCTAGCAGTG				
35S:Flag-Os-LIR1	OsLIR1-Sac I-R	AAAGAGCTCTCAGGTGGCCTTGCAGAACTCT				
	OsLFNR1-Kpn I-F	GAAGGTACCATGGCCGCCGTCACGGCTGCGGCCGTC				
35S:Os-LFNR1-MYC	OsLFNR1-MYC-BamH I-R	CGCGGATCCCGTAGACTTCCACATTCCATTGC				
	OsLFNR2-Kpn I-F	GAAGGTACCATGGCCGCCGTGAACACAGTGTCG				
35S:Os-LFNR2-MYC	OsLFNR2-MYC-BamH I-R	CGCGGATCCCGTAGACTTCCACGTTCCATTGC				
	LB2	CGCTCATGTGTTGAGCATAT				
	OsTIC62-F1	ATGGAGCAAGCAGCGAAGGCCA				
Os- <i>tic62</i> T-DNA test	OsTIC62-R1	CTATAGTTTGGGGGTAGATGGG				
	OsTIC62-R2	GACTAAATTACTTCTTATACAT				
	OsTIC62-EcoR I -F	CCGGAATTCCCTCCGCCCGAACCTGAGGTAGTT				
His-Os-TIC62Ct	OsTIC62-Not I -R	ATAAGAATGCGGCCGCCTATAGTTTGGGGGGTAGATGGG				
	OsTIC62-EcoR I -F	CCGGAATTCATGGAGCAAGCAGCGAAGGCCA				
GST-Os-TIC62	OsTIC62-Not I -R	ATAAGAATGCGGCCGCCTATAGTTTGGGGGGTAGATGGG				
	Osl IR1-Nde1-F	GGAATTCCATATGCAGACCGCTGCTAGCAGTG				
Os-LIR1-His	Osl IR1-Xho1-R noTGA					
	Osl FNR1-Nde1-F	GGAATTCCATATGATGGCCGCCGTGAACACAGTGT				
His-Os-LFNR1	Osl ENR1-Xbo1-R					
His-Os-LFNR2	Osl END2 Yes1 P					
	Osl IR1-EcoR I-E					
Os-LIR1 pGADT7	OsLIR1-Xho I-R	CCGCTCGAGTCAGGTGGCCTTGCAGAACTCT				
	OsLFNR1-EcoR I-F	CGGAATTCATGGCCGCCGTCACGGCTGCGGCCGTC				
Os-LFNR1 pGBKT7	OsLFNR1-BamH I-R	CGCGGATCCTCAGTAGACTTCCACATTCCATTGC				
Os-LFNR2 pGBKT7	OsLFNR2-Kpn I-F	GAAGGTACCATGGCCGCCGTGAACACAGTGTCG				

Supplemental Table 3. Primers used in this research.

	OsLFNR2-MYC-BamH I-R	CGCGGATCCTTAGTAGACTTCCACGTTCCATTGC			
	OsTIC62-Sfi I-F	GCAGGCCATGGAGGCCATGGAGCAAGCAGCGAAGGCCA			
US-11002 POBRI /	OsTIC62-Sfi I-R	GCAGGCCTCCATGGCCCTATAGTTTGGGGGTAGATGGG			
	ZmLIR1-EcoR I-F	CCGGAATTCATGCAGGCTGCCGCTACTGCCGC			
	ZmLIR1-Xho I-R	CCGCTCGAGTCAGGCGTGCGCCAGCTCCTTGGAG			
	ZmLFNR1-EcoR I-F	CCGGAATTCATGGCTGCCGTGACCGCGGCGG			
	ZmLFNR1-BamH I-R	CGCGGATCCTCAGTAGACTTCGACGTTCCATTGC			
Zm I END2 aCBKT7	ZmLFNR2-EcoR I-F	CCGGAATTCATGGCCACCGTCATGGCCGCG			
	ZmLFNR2-BamH I-R	CGCGGATCCTTAGTAGACCTCCACATTCCATTGA			
	GmLIR1-EcoR I-F	CCGGAATTCATGCAAACATCCTTAACCTTTGCTG			
	GmLIR1-Xho I-R	CCGCTCGAGCTAGTAGACACCCTTCTGATACTCG			
	GmLFNR1-EcoR I-F	CCGGAATTCATGGCTGCTGCGGTTAGTGCTGC			
	GmLFNR1-BamH I-R	CGCGGATCCTTAATAGACTTCGACATTCCATTGC			
Cm LEND2 nCRKT7	GmLFNR2-EcoR I-F	CCGGAATTCATGGCTGCTGCGGTTAGTGCTG			
	GmLFNR2-BamH I-R	CGCGGATCCTTAATAGACTTCGACATTCCATTGC			
	CsLIR1-BamH I-F	CGGGATCCATGCAGTTCCAGGCAGCTCTTTCCA			
	CsLIR1-Xho I-R	CCGCTCGAGCTAGTAAACTCCTTTTTGATACTCT			
	CsLFNR1-EcoR I-F	CGGAATTCATGGCCGCCGCCGTAACCGCCGCCG			
	CsLFNR1-Bam H I-R	CGGGATCCTCAATAAACTTCCACATTCCATTGC			
	OsLIR1-dCAPS-F	GGCCGTGTTGCCCGCTGCTGTGAAGGGGCGCAGCCTGCG			
Os-lir1-1 test		AATT			
	OsLIR1-dCAPS-R	TGTTAGAGCTGTAGTCCACCTCCGCAGCCTCC			
	AtLIR1-F	ТСАСТАААССТАТСТТСТТААССА			
At-lir1 T-DNA test	AtLIR1-R	СТТААТТСТТӨТӨТААААСССА			
	Salk-LBb1	GCGTGGACCGCTTGCTGCAACT			
	OsLIR1-Pac I-F	CCCTTAATTAATATGCAGACCGCTGCTAGCAGTG			
	OsLIR1-Asc I-R	TTGGCGCGCCCGGTGGCCTTGCAGAACTCTCCG			
BIEC for On LEND1	OsLFNR1-Pac I-F	CCCTTAATTAACATGGCCGCCGTCACGGCTGCGG			
	OsLFNR1-Asc I-R	TTGGCGCGCCCGTAGACTTCCACGTTCCATTGCTCG			
BIEC for On LEND?	OsLFNR2-Pac I-F	CCCTTAATTAACATGGCCGCCGTGAACACAGTGT			
DIFC IOI OS-LFINKZ	OsLFNR2-Asc I-R	TTGGCGCGCCCGTAGACTTCCACATTCCATTGCTCC			
	OsRBCs-Pac I-F	CCCTTAATTAACATGGCTCCCTCGGTGATGGCTTCGT			
BIFC IOI US-RBCS	OsRBCs-Asc I-R	AAAGGCGCGCCCTTAGTTGCCGCCTGACTCCTCGCAA			

Supplemental Methods. Phylogenetic Analysis.

The protein sequences of LIR1 from 37 plant species were aligned with MUSCLE tools (Edgar, 2004) from EBI webserver (<u>http://www.ebi.ac.uk/Tools/msa/muscle/</u>). The resulting alignment was used for phylogenetic analysis. The topology was inferred using minimal evolution (ME) as implemented in MEGA version 4 (Tamura et al., 2007) using a Jones-Taylor-Thornton (JTT) substitution model with 1000 bootstrap replicates, uniform rates among sites and gaps with pairwise deletion. The initial tree was obtained by Neighbor joining (NJ) method and we used close-neighbor-interchange search to examine the neighborhood of the NJ tree to find the potential ME tree. The numbers at the nodes refer to bootstrap support percentage.

Supplemental References.

Edgar R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5:113. doi: 10.1186/1471-2105-5-113.

Tamura K., Dudley J., Nei M., and Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24 (8): 1596-1599.