CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi's sarcoma-associated herpesvirus infected endothelial cells

Supplementary Materials

Supplementary Figure S1: The enrichment analysis of gene profile alterations in KSHV-infected and CD147overexpressed endothelial cells. (A–C) The HumanHT-12 v4 Expression BeadChip (Illumina) was used to detect alterations in gene profile in HUVEC cells infected by KSHV (vs mock cells), or cells transduced with AdV-CD147 (vs AdV-transduced cells). The enrichment analysis of gene profiles significantly altered(up/down \geq 2fold and p < 0.05) in KSHV-infected and CD147-overexpressed HUVEC cells was performed using the Metacore Software (Thompson Reuters) Modules: Pathway Maps (A), Gene Ontology Processes (B) and Process Networks (C).

Immune response IL-1 signaling pathway

Immune response MIF mediated glucocorticoid regulation

Supplementary Figure S2: The top 2 scored maps (maps with the lowest *p*-value) based on the enrichment distribution sorted by 'common' gene set altered in KSHV-infected and CD147-overexpressed endothelial cells. (A–B) Experimental data from all files is linked to and visualized on the maps as thermometer like figures. Up-ward thermometers have red color and indicate upregulated signals and down ward (blue) ones indicate downregulated expression levels of the genes.

Supplementary Figure S3: The top 2 scored (by the number of pathways) AN networks from 'common' gene sets altered within KSHV-infected and CD147-overexpressed endothelial cells. (A–B) Thick cyan lines indicate the fragments of canonical pathways. Upregulated genes are marked with red circles; downregulated with blue circles. The 'checkerboard' color indicates mixed expression for the gene between files or between multiple tags for the same gene. Data was produced by the Metacore Software (Thompson Reuters).

Supplementary Figure S4: Effective silencing of CD147 and downstream ADAMTSs by RNAi in KSHV-infected endothelial cells. (A–C) HUVEC were transfected with negative control siRNA (n-siRNA), *CD147*-siRNA, *ADAMTS1*-siRNA or *ADAMTS9*-siRNA, respectively, then infected by purified KSHV. Gene transcripts were quantified by qRT-PCR. Error bars represent the S.E.M. for 3 independent experiments. * = p < 0.05.

Supplementary Figure S5: Effective long-term silencing of CD147 by RNAi in TIVE-LT cells *in vitro*. TIVE-LT cells were transfected with negative control siRNA (n-siRNA) or CD147-siRNA, then cell lysates were 3 collected at indicated time and protein expression was measured by immunoblots. Lane 1, 3, 5, 7: TIVE-LT + n-siRNA; lane 2, 4, 6, 8: TIVE-LT + CD147-siRNA.

Supplementary Figure S6: Targeting ADAMTS1 significantly suppresses TIVE-LT cell tumorigenesis *in vivo*. TIVE-LT cells transfected with n-siRNA or *ADAMTS1*-siRNA (approximately 5×10^5 cells were mixed at a ratio of 1:1 with growth factor-depleted Matrigel) were injected subcutaneously into the right and left flanks of nude mice (3 mice per group), respectively. The mice were observed and measured every 2~3 d for the presence of palpable tumors for 21 d.

Gene	Sequences $(5' \rightarrow 3')$
ADAMTSI	sense AGCCTCAGAATCCCATACA antisense TTGCCGTTGATACACCAT
ADAMTS9	sense CCAGCAGGAGTGAATGTAG antisense AGTCCAGGCAGAATAGCG
HMOX1	sense TTTGAGGAGTTGCAGGAGC antisense AGGACCCATCGGAGAAGC
TRIB1	sense GCCACCAGTCAGCCATCGT antisense GGGTATCGTCCAACCAGAA
IL-6	sense GTCCAGTTGCCTTCTCCC antisense GCCTCTTTGCTGCTTTCA
ZnT3	sense GCCCTTCCACCACTGCCACA antisense TGCCAGATACCCGCCGACCA
GDF3	sense AAGAAAGGGAACAGTTGACA antisense CCAGGAATAACCCGAAAT
FBLN5	sense CAACACCTACGGCTCTTT antisense TCAGATAAGGCTCCTCACA
COL1A2	sense GTGGTGGTTATGACTTTGGTT antisense GCGAGCTGGGTTCTTTCTA
SDPR	sense CTCCGACGCAACCATTTC antisense GCTTTCTTGAGGCTATCCACT
IL-6R	sense AGTTCCAGCTTCGATACCGAC antisense GTATTGTCAGACCCAGAGCTG
VEGFR1	sense GACTAGATAGCGTCACCAG antisense AATACTCCGTAAGACCACA
VEGFR2	sense AAAGGGTGGAGGTGACTG antisense GACATAAATGACCGAGGC
β-actin	sense GGAAATCGTGCGTGACATT antisense GACTCGTCATACTCCTGCTTG

Supplementary Table S1: Primer sequences for qRT-PCR in this study