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Figure S1: HDDM without neural data. Related to figure 2. (A) Main effects on decision thresholds 
and drift rates of the HDDM not containing any neural data. The left panel shows the posterior 
distribution of the regression coefficient for the effects on the decision thresholds. The right panel 
shows the posterior distribution of coefficients for the effects on drift rates. Peaks reflect the best 
parameter estimate, while the width of the distribution represents uncertainty. All posterior 
distributions are shifted away from zero (i.e. they do not overlap with 0 on the x-axis) and thus have 
100% posterior probability to be different than 0. Note that threshold regression coefficients (left 
panel) are shown relative to task A, i.e. the threshold estimate during task A constitutes the intersect in 
the regression. Similarly, drift rate regression coefficients (right panel) are shown relative to drift rate 
during medium coherence (see also Supplemental Experimental Procedures). (B) Quantile probability 
plots. Observed mean reaction times (RT) for five quantiles (10, 30, 50, 70 and 90 %) are marked by a 
cross and plotted against their cumulative probability for the five conditions separately. Predicted 
quantile mean RTs are marked as ellipses with the width capturing estimation uncertainty (standard 
deviation of the posterior predictive distribution from the model). The plot shows that the HDDM 
provided overall good predictions of the observed data and, more importantly, captured effects of task 
manipulations on RT. For example, it predicts an RT shift upwards from high to low unidirectional 
coherence trials as well as increased RT in medium unidirectional coherence trials in task B compared 
to medium unidirectional coherence trials in task A. Due to the low number of error trials quantile 
probability plots are only shown for correct trials. Nevertheless, predicted error rates can be evaluated 
by the predicted cumulative probabilities along the x-axis (e.g. poor predictions of error rates would 
results in incongruencies between predicted and observed quantile RT along the x-axis). 
 



 
 
Figure S2: Non-hierarchical DDM (NHDDM). Related to figure 2. (A) Drift rate slope parameters 
estimated from the NHDDM showed a significant difference in drift rate slopes in low compared to 
medium unidirectional coherence trials (-0.022 ± 0.015 SD, z(10) = -2.756, Pcorrected = 0.012) and high 
compared to medium unidirectional coherence trials (0.040 ± 0.031 SD, z(10) = 2.845, Pcorrected = 0.008; 
Wilcoxon signed rank tests). Thus, the mean effects of coherence manipulations on drift rates were 
similar to the ones obtained from the HDDM (figure S1). Note that in the NHDDM there was no 
separate drift rate slope for trials with initial bidirectional coherence, since these drift rate slopes were 
modeled as medium drift rate slopes with an 0.83 s delay according to the delayed onset of relative 
increase in evidence accumulation in this condition. The correlation plots show that drift rate 
parameters estimated from NHDDM and HDDM were also proportionally similar, i.e. participants with 
high drift rate slopes in NHDDM had high drift rates in the HDDM and vice versa (low coherence: rho 
0.892, Pcorrected = 0.003, medium coherence: rho 0.824, Pcorrected = 0.006, high coherence: rho 0.785, 
Pcorrected = 0.012; Pearson correlations). (B) Like the HDDM, NHDDM threshold parameters showed a 
significant increase in threshold in task B compared to task A (0.024 ± 0.031 SD, z(10) = 2.223, P = 
0.026; Wilcoxon signed rank test). Furthermore, threshold parameters were also proportionally similar 
as indicated by correlation analyses (task A: rho 0.822, Pcorrected = 0.004, task B: rho 0.682, Pcorrected = 
0.042, Pearson correlations). Note that parameters estimated in HDDM are scaled with a factor of 10 
compared to ‘traditional’ DDM values (e.g. a drift rate of 0.1 in the NHDDM corresponds to a drift rate 
of 1 in HDDM). (C) Quantile probability plots. Observed mean RTs for four quantiles (20, 40, 60 and 
80 %) are marked by a cross and plotted against their cumulative probability for the five conditions 
separately. Predicted quantile mean RTs are marked as circles. The plot shows that the NHDDM, like 
the HDDM, provided overall good predictions of the observed data and captured effects of task 
manipulations on RT (see also figure S1).  
 
 
 



 
 
Figure S3: Results of the simulation analysis. Related to figure 2. A dataset (RT and accuracy) was 
simulated based on threshold and drift rate slope parameters of a representative patient (patient with 
parameters closest to the group mean). HDDM was the fitted to this simulated dataset. (A) We 
compared different models, which differed in the decisiosn parameter, which was modulated during the 
tasks (drift rate and threshold, only drift rate or only threshold) and the experimental manipulation, 
which modulated these latent parameters (coherence and task, only coherence and only task). The true 
model, which was used for simulating the dataset, consisted of a drift rate slope modulation by 
coherence rate and a threshold modulation by task. This model was also clearly the best model 
according to its DIC (first column in (A); DIC difference to next best model 27), i.e. HDDM model 
evidence favored the true model over the alternative models. DIC values for all models were: model S1 
(a ~ task, v ~ coh) 4336, model S2 (v ~ task, a ~ coh) 4429, model S3 (v ~ coh) 4363, model S4 (a ~ 
task) 4426, model S5 (v ~ task) 4449, model S6 (a ~ coh) 4427. The recovered parameters are shown in 
(B), with a significant change in threshold in task B vs. task A and significant changes in drift rates in 
trials with low and high unidirectional coherence compared to trials with medium unidirectional 
coherence (100% posterior probability for all parameter estimates being different than 0). Interestingly, 
the model was also able to recover that the true drift rate manipulation during low unidirectional 
coherence was stronger than the change in drift rate during high unidirectional coherence (relative 
change in the drift rate slope used for simulation was -0.028 for low unidirectional coherence and 
+0.021 for high unidirectional coherence). (C) shows quantile probability plots with observed (cross) 
and predicted (ellipses) RT distribution for the four considered conditions. As in figure S1, the width of 
ellipses indicates estimation uncertainty (standard deviation). 
 



Supplemental tables: 
 
Patient Age Disease  

duration 
UPDRS-
III OFF 

UPDRS-
III ON 

First symptom Reason for 
surgery 

Medication  

1 49 10 42 6 Tremor Tremor Levodopa 300;  
Trihexyphenidyl 2 

2 50 4 N/A N/A Tremor Tremor Levodopa 400; 
Rotigotine 16; 
Entacapone 600 

3 66 16 32 13 Loss of dexterity Bradykinesia Levodopa 600; 
Ropinirole 24; 
Rasagiline 1; 
Amantadine 200;  

4 51 7 58 13 Loss of sense of 
smell 

Tremor, gait 
difficulties 

Levodopa 1300 

5 64 12 70 20 Tremor Dyskinesias Levodopa 1200;  
Apomorphine 7 mg/h 

6 47 14 34 11 Bradykinesia Dyskinesias, 
motor 
fluctuations 

Levodopa 350; 
Pramipexole 1.05; 
Amantadine 300 

7 66 14 63 24 Shoulder pain, 
stiffness 

Motor 
fluctuations 

Levodopa 650; 
Pergolide 9 
 

8 57 6 21 7 Bradykinesia Dyskinesias, 
motor 
fluctuations 

Levodopa 750;  
Entacapone 1000 

9 61 4 37 15 Tremor Tremor Levodopa 750; 
Amantadine 200; 
Entacapone 1000 

10 65 15 51 21 Tremor Freezing Levodopa 400; 
Ropinirole 12; 
Amantadine 200 

11 42 9 60 42 Loss of dexterity Bradykinesia, 
dystonia, 
freezing 

Levodopa 600;  
Amantadine 400  

mean 56.2 10.1 46.8 17.2    
 
Table S1: Clinical and demographic characteristics of included patients. Age is given in years, 
medication is given in mg/day unless otherwise stated. N/A, not available. 
 
Supplemental Experimental Procedures: 
 
Participants 
Eleven patients (six males, mean age 56.2 years ± 8.7 (standard deviation, SD), mean disease duration 
10.1 years ± 4.4 SD) with Parkinson’s disease (PD) undergoing deep brain stimulation (DBS) of the 
subthalamic nucleus (STN) were enrolled in the study (for clinical details see table S1). In all patients a 
quadripolar macroelectrode (model 3389, Medtronic Neurologic Division, Minneapolis, MN, USA) 
featuring four platinum-iridium cylindrical surfaces was implanted in bilateral STN. Lead localization 
was confirmed either by intra-operative stereotactic magnetic resonance imaging or by the clinical 
effect during the operation and immediate post-operative stereotactic computerized tomography. DBS 
electrode extension cables were externalized enabling recordings prior to implantation of a 
subcutaneous pacemaker up to seven days later. 

A healthy control group could not be included in the study due to the invasive nature of 
electrode implementation. However, in order to approximate physiological function of STN as closely 
as possible, all recordings were conducted in patients on their normal medication. Importantly, the 
dopaminergic state in PD does not affect decision thresholds [S1], which were the main focus of this 
study. Mean improvement in motor function as indexed by Unified Parkinson’s Disease Rating Scale-
III was 63.9 % ± 14.8 SD after a levodopa challenge indicating a very good dopamine response in the 
studied patient group. All patients completed the two experimental tasks consecutively on the same 
day, three to six days after electrode implantation. In accordance with the Declaration of Helsinki, all 



patients gave their written informed consent to participate in the study, which was approved by the 
local ethics committee. Of note, data of the same patient group has been reported previously 
concerning separate group analysis of averaged time frequency spectra during the tasks [S2, S3]. Here, 
for the first time, we demonstrate that trial-by-trial variations of STN activity (which are considered 
noise in averaged time-frequency spectra) predict context-dependent adaptations of decision-thresholds 
during perceptual decision-making. 
 
Paradigms 
The experimental tasks have been described in detail previously [S2, S3] and are illustrated in Fig. 1A. 
A cloud of 200 randomly moving white dots was presented on a black background. The tasks were 
presented on a 33 cm Macintosh laptop with a 60 Hz screen refresh rate using PsychoPy [S4]. The 
cloud was 14 cm in diameter and dots were 10 pixels large (visual angle ≈ 0.25°). Each randomly 
moving dot moved in a straight line at a rate of 0.14 mm per frame for 20 frames (333 ms) before 
moving to another part of the cloud and moving in a new direction chosen pseudorandomly between -
180° and 180°. Participants were instructed to indicate the overall direction of dots whenever they 
noticed that the cloud was moving to the left or to the right side. They were instructed to respond as 
fast and accurately as possible, i.e. to balance speed and accuracy. Choices were indicated by a left 
(“z”) or right (“/”) button press on a keyboard with the left and right index finger, respectively. 
Participants performed task A first. The task comprised three randomly interspersed conditions. During 
trials with high unidirectional coherence the number of dots moving coherently into either the left or 
right side of the screen increased linearly from 0% to 50% within 2.083 s (corresponding to 0.004% per 
frame). During trials with medium and low unidirectional coherence 50% coherence was reached after 
4.17 s (0.002% increase per frame) and 8.333 (0.001% increase per frame), respectively. In task B, 
participants were told that in some of the trials dots would start moving in opposite directions instead 
of just one direction. In these trials the number of dots moving coherently both to the right and left 
increased at the same rate until 0.83 s. After 0.83 s, the dots moving in the incorrect direction no longer 
increased in coherence (i.e. they were capped at 10% of all 200 dots), while the dots moving into the 
correct direction further increased their coherent motion until reaching 50% coherence after 4.17s. The 
remaining trials of task B were identical to trials with medium unidirectional coherence in task A (i.e. 
the number of dots moving coherently in one direction increased linearly from 0% to 50% within 
4.17s). In both tasks, all trials were pseudo-randomly presented with equal probability (28 of 84 trials 
per condition in task A, 40 of 80 trials per condition in task B). Visual feedback (“incorrect”) was 
provided for a duration of 0.75 s only in case of erroneous responses or prolonged response times > 14 
s. Before each trial, dots moved randomly for a time period between 2 and 4 s. Prior to commencement 
of recordings participants could practice the tasks as long as they wished (usually < 10 trials). 
We chose to use coherence rates, which linearly increased over time in contrast to time-invariant 
coherence differences between conditions in order to avoid presenting subjects with an explicit cue in 
the beginning of each trial. Thus, at no point subjects were given a ‘cue’ indicating that the trial had 
begun. After the subject made the response for a given trial, all dots immediately began to move in 
random direction for a duration of 2 - 4 s before slowing starting to move coherently again for the next 
trial. This design allowed us to assess neural activity, which is not related to abrupt stimulus changes or 
motor preparation, because the changes in spectral STN activity were observed well before the choice 
was executed [S2, S3]. 
 
Analysis of behavioral data  
All trials with RT > 8 s or < 0.25 s were discarded from further analyses. There were three main 
experimental manipulations during the tasks. First, an increase (high unidirectional coherence) or 
decrease (low unidirectional coherence) in the rate of coherently moving dots relative to trials with 
medium unidirectional coherence in task A. Second, the difference between identical trials with 
medium unidirectional coherence rates in task B and task A, which only differed regarding the 
presence of intermixed trials with initial bidirectional coherence in task B. We hypothesized that the 
presence of such trials would increase participants’ level of cautiousness due to the increased task 
demands. Third, the difference between trials with initial bidirectional coherence and medium 
unidirectional coherence trials in task B. The first 0.83s in the former trials did not convey any relative 
evidence for either direction.  
To assess effects on reaction times (RT) and accuracy rates we computed the relative change in RT 
(e.g. (RT during high unidirectional coherence – RT during medium unidirectional coherence) / RT 
during medium unidirectional coherence) and accuracy rates (e.g. (Accuracy during high unidirectional 
coherence – Accuracy during medium unidirectional coherence) / Accuracy during medium 
unidirectional coherence) and used non-parametric one-sample Wilcoxon signed-rank tests to test the 



resulting values against a median of 0 using SPSS statistics (v22, IBM, New York, USA). The 
significance threshold was set to 0.05 adjusting for multiple comparisons using the Bonferroni method. 
 
Analysis of trial-by-trial LFPs 
Local field potentials (LFP) were recorded from DBS electrodes. In addition, electroencephalography 
(EEG) was recorded from FCz, Cz and Pz according to the international 10-20 system. A wider 
coverage with EEG electrodes was not possible due to surgical wounds and dressings. Preprocessing of 
electrophysiological data was identical to the procedures reported previously [S2, S3]. In short, all 
signals were sampled at 2048 Hz, band-pass filtered between 0.5 and 500 Hz, amplified (TMSi porti, 
TMS International, Enschede, The Netherlands), down-sampled to 1000 Hz and notch filtered at 50 Hz. 
LFPs were then converted to a bipolar montage between contacts (three channels per STN) and EEG 
electrodes were re-referenced to Cz to limit effects of volume conduction. Trials with clear artifacts 
were discarded. After removal of trials with artifacts and behavioral outliers, 29.5 trials per subject and 
condition and 1621 trials in total remained. Power and phase of LFPs were computed using the 
continuous wavelet transform (1 Hz frequency resolution, 10 cycles per frequency) and resulting time 
frequency spectra were chunked into individual trials based on the onset of the motor responses for 
each task separately. To control that the relatively long wavelets did not lead to smearing of LFP power 
across trials, we repeated this analysis using 5 cycle wavelets. Single trial power estimates of low 
frequency oscillations (LFO, see below) using 10 cycle wavelets and 5 cycle wavelets, respectively, 
were highly correlated (rho = 0.95, Spearman correlation over all trials) and yielded identical results in 
the HDDM analysis (see below; data is only shown for the analysis using 10 cycle wavelets). Since 
group analysis of time-frequency spectra during the tasks showed a sustained pre-response increase in 
LFO from approximately 3 s prior to the button presses [S2, S3], see also fig. 2A, power values were 
extracted from -3 to 0 seconds. In case response time in a given trial was < 3 s (median RT was 3.113 
s) time windows for extracting single-trial pre-response power values were restricted to –RT to 0 in 
order to avoid modeling STN activity prior to trial onset. Single trial estimates were then averaged 
across the respective time window and frequencies (2-8 Hz and 13-30 Hz, see below) and normalized 
to the mean power of those frequencies in the peri-response window (-3 to +2 s) of each participant and 
finally averaged across all STN electrodes. We chose to average across STN electrodes in order to 
avoid selection bias, even though this procedure might underestimate spectral changes. Importantly, 
neither STN -power, nor -FCz connectivity values differed regarding localization on the dorso-ventral 
STN axis [S2]. The 2-8 Hz window was chosen, because increases in LFO and cortico-STN 
connectivity in the current tasks did not have a clear lower boundary at 4 Hz (theta) [S2, S3], which is 
in agreement with previously reported motor conflict-related power changes in STN [S5, S6].  Beta 
power (13-30 Hz) was included, because of its central role in motor processing in the STN [S7]. To 
assess whether there were overall differences in pre-response LFO power between task A and B we 
compared power values (averaged over the 2-8 Hz frequency window and fixed -3 to 0s time window) 
using paired samples t-test. 
 
Drift diffusion modeling 
The goal of drift diffusion modeling (DDM) in this study, was to investigate whether trial-by-trial 
fluctuations in pre-response STN power were related to modulations of latent processes underlying 
perceptual decision making and whether this relationship was specific to the frequency range of 
oscillatory activity (LFO vs. Beta) and decision-making process (decision threshold vs. drift rate). A 
Bayesian hierarchical DDM (HDDM) has been developed and optimized for such purposes allowing 
regression of trial-by-trial variations in brain activity on decision parameters [S8]. Importantly this 
toolbox is also particularly suited for studies with low trial counts [S5, S8, S9], such as the current 
study with restrictions on the possible duration of the experiment due to vulnerability of the studied 
patient group. In DDM choices between two alternative options (here pressing the left or right button) 
are simulated by a noisy process in which evidence is accumulated over time (here the fraction of dots 
moving into different directions) until the evidence for one choice over the other is sufficient and the 
response is executed. There are two main parameters of interest in DDM. First, the rate of evidence 
accumulation is reflected by the drift rate v, which critically depends on the presented stimulus. Thus, 
in the current tasks drift rate was assumed to be modulated by the rate of change in coherently moving 
dots (manipulations in task A) and a delay in relative evidence accumulation due to dots moving into 
opposite directions (manipulation in task B). Second, the decision threshold a determines how much 
evidence has to be accumulated until a decision is made and thus reflects a measure of cautiousness. In 
this study, this parameter was assumed to be modulated by the presence of intermixed trials with an 
initial bidirectional coherence in task B, i.e. task B vs. task A (see also results of the behavioral 
analysis). A third parameter is the non-decision time t reflecting processes unrelated to the decision 



(e.g. sensory processing in visual areas and motor execution). These parameters are estimated by the 
model based on the observed behavior, i.e. accuracy and response times. DDM has been shown to 
reliably detect these latent decision-making parameters throughout a variety of different behavioral and 
neurophysiological experiments over the last few decades [S10]. In the recently developed HDDM the 
trade-off between random and fixed effects models is optimized by assuming that parameters from 
individual subjects are drawn from the group distribution while allowing variation from this 
distribution given sufficient evidence to overwhelm the group prior [S8]. Parameters for each subject 
and condition were modelled according to a normal (real valued parameters) or Gamma distribution 
(positive valued parameters) centered on the group mean with group variance. Prior distributions were 
informed by 23 previous studies reporting parameters on a range of decision-making tasks [S8]. The 
starting parameter z (often referred to as bias parameter) was fixed to 0.5, because dots moving to the 
right or left had equal probability, i.e. participants were not biased toward right or left responses in the 
experimental tasks. Markov chain Monte Carlo sampling methods were used for accurate Bayesian 
approximation of the posterior distribution of parameters (generating 20 000 samples, discarding 10 
000 samples as burn-in and keeping every fifth sample). We inspected traces of model parameters, 
their autocorrelation and computed the R-hat (Gelman-Rubin) convergence statistics to ensure that the 
models had properly converged [S8]. 

First we assessed basic assumptions of the model without including any neural data. This 
comprised modulations of drift rate by differences in the rate of coherence, where we a-priori expected 
a decrease in drift rate in trials with low unidirectional coherence and trials with an initial bidirectional 
coherence and an increase in drift rate in trials with high unidirectional coherence relative to trials with 
medium unidirectional coherence as well as modulations of threshold by task with an increased 
threshold in task B relative to task A. We validated our model assumptions (both drift rate and 
threshold were modulated by the experimental manipulations) by testing that this model had stronger 
evidence than models postulating only a change in drift rate or threshold respectively, using the 
deviance information criterion (DIC). DIC is widely used for comparisons of hierarchical models 
where other measures (e.g. Bayesian information criterion) are not appropriate [S8, S9]. A lower DIC 
value for a given model (for the whole group) indicates higher likelihood for that model compared to 
an alternative model taking into account model complexity (degrees of freedom). Usually a DIC 
difference of 10 is considered significant [S11]. Parameters of the best model were analyzed by 
Bayesian hypothesis testing, i.e. the percentage of samples drawn from the posterior that fall within a 
certain region (e.g. > 0). Posterior probabilities ≥ 95% were considered significant. Please note that this 
value is not equivalent to p-values estimated by frequentist methods (e.g. Wilcoxon signed rank tests 
during the analysis of behavioral data), but it can be interpreted in a similar manner. In the article, we 
refer to these estimates as posterior probabilities to clearly demarcate them from p-values. To assess 
model predictions we computed quantile probability plots, a popular measure for assessing model 
performance in the DDM framework [S10]. Here, observed and predicted RT for the 10, 30, 50, 70 and 
90 percentile of trials (e.g. 10% fastest trials, 30% fastest trials, etc.) were plotted against their 
observed and predicted cumulative probability for each condition. Due to the low number of error 
trials, we only plotted quantiles for correct trials (see figure S1).  

Of note, we made two simplifying assumptions when using HDDM. First, we did not 
explicitly model that a relative difference in coherence (i.e. to the left or right side) first started after 
0.83 s in 50% of trials in task B, but just assumed a different drift rate during these trials. Furthermore, 
we assumed that changing the rate of dot coherence over time would have a similar effect on evidence 
accumulation as a difference in dots coherence, which is constant over time. This assumption was 
supported by the observation that participants executed responses during equal levels of integrated 
evidence and not instantaneous evidence in task A [S3]. To validate this approach we also applied a 
non-hierarchical DDM using custom-written scripts in matlab (R2015a, The MathWorks, Natick, MA, 
USA), in which we specified the exact properties of the task. In particular this model assumed that drift 
rate in condition i was a linearly increasing function vi(t)=sit, where si is the slope parameter for 
condition i, and t is the time from onset of coherent motion, or the time from which coherence of dots 
moving in the correct direction was higher than the coherence of dots moving in the other direction on 
trials with an initial bidirectional coherence. We applied a previously validated method for non-
hierarchical estimation of model parameters using a subplex algorithm for minimizing the cost function 
defined as the difference between observed and predicted quantile RT distribution (20, 40, 60 and 80 
percentile) according to a least-squares estimation [S12]. The parameters comprised drift rate slopes s1 
(trials with low unidirectional coherence in task A), s2 (trials with medium unidirectional coherence in 
task A and B including a delayed onset of 0.83 s for trials with an initial bidirectional coherence in task 
B) and s3 (trials with high unidirectional coherence in task A), threshold a1 (task A) and a2 (task B) as 
well as the non-decision time t. The parameters were fitted to the observed data (10 iterations of 



random search for starting values, 70 optimization iterations, 50 tuning iterations and 20 repetitions of 
the whole process; please see Bogacz and Cohen [S12] for more details of the method), for each 
participant separately and the best model (least error) was used for inference on model parameters. The 
code can be made available upon request. This non-hierarchical DDM (NHDDM) allowed us to 
validate the HDDM method described above by specifying exact experimental manipulations (e.g. 
slope in drift rate) and furthermore allowed second (group) level regression analyses with neural 
parameters, which cannot be computed at the single trial level (inter-site-phase-clustering; see below). 
We compared results of the HDDM and NHDDM by assessing parameter estimates at the group and 
individual subject level and assessed NHDDM fits by computing quantile probability plots (figure S2).  

Finally, we validated the HDDM by fitting it to a simulated dataset. The simulation was based 
on estimated parameters derived from NHDDM for a representative patient (patient with parameters 
which were closest to the group mean). We simulated a dataset consisting of 300 trials per condition 
based on the number of trials for the whole group. We used conditions with low, medium and high 
unidirectional coherence in task A and medium unidirectional coherence in task B (i.e. 1200 trials) in 
order to model a manipulation of drift rate slope (low and high relative to medium unidirectional 
coherence) and threshold (medium unidirectional coherence in task B relative to medium unidirectional 
coherence in task A). We then assessed whether HDDM could successfully recover the true condition-
specific manipulations of parameters based on the simulated dataset. To this end, we computed model 
evidence (DIC) for the true model compared to alternative models comprising different possible 
combinations of drift rate and threshold modulations during the different conditions. Furthermore, we 
assessed whether the true parameter manipulations could be recovered (effects on drift rate and 
threshold) and compared the predicted with the observed RT distribution. This analysis showed that 
HDDM successfully recovered the true parameter manipulations, which is shown in figure S3.  
After verifying assumptions of the HDDM applied in this study, we then entered trial-by-trial STN-
LFPs (z-scored) into the HDDM to test whether fluctuations in STN activity modulated decision-
making parameters. We z-scored single trial estimates of STN power by subtracting the mean and 
dividing by the standard deviation separately for task A and task B. To further assess intercept issues, 
we repeated the HDDM analysis using non-z-scored data, which yielded identical results. Thus, 
regression coefficients between STN-LFPs and the decision parameter were estimated within the same 
hierarchical model, which was used to estimate the parameters themselves. For example, the model 
postulating that decision threshold a on trial x was not only modulated by Task but also STN-LFO (and 
their interaction) was defined by the regression: a(x) = β0 + β1Task(x) + β2LFO(x) + β3Task(x)*LFO(x)   
Regressing across trials allowed inferences on the extent to which threshold changes with STN activity 
[S8]. We created four a-priori defined models which differed regarding the frequency band of STN 
power (LFO vs. Beta) and the decision parameter which was modulated (threshold vs. drift rate), see 
Fig. 2B. These models were then compared using their DIC (relative to the model not containing any 
neural data). The best model was used for inferences on model parameters using Bayesian hypothesis 
testing, i.e. according to their posterior probability densities (see above). Posteriors of regression 
coefficients for trial-wise regressors were estimated only at the group level to address potential 
collinearity among model parameters, for regularizing parameter estimates and to prevent parameter 
explosion [S8, S9]. 
 
Analysis of FCz-STN inter-site-phase-clustering and regression analyses 
Models of basal ganglia function during decision-making postulate that decision thresholds can be 
adjusted through activation of a connection between mPFC and STN in case of choice uncertainty or 
decision conflict [S2, S5, S9, S13-15]. To test this hypothesis, we aimed to assess whether mPFC-STN 
connectivity predicted adjustment of decision-thresholds and whether this relationship differed between 
low and high levels of cautiousness. However, connectivity parameters are more robust when averaged 
across trials compared to single-trial parameter estimates. Therefore, we computed estimates of inter-
site-phase-clustering (IPC), a phase-based measure of connectivity, between FCz and STN for each 
subject and task and tested whether this measure predicted inter-individual differences in decision-
thresholds. We only analyzed IPC between FCz and STN, because our previous studies have shown 
that task-related changes in cortico-STN connectivity were specific for the FCz-STN connection and 
were not observed between Pz and STN [S2, S3]. Please note that while we cannot discount more 
lateral prefrontal areas contributing to the signal at FCz due to the limited coverage in this study, 
previous studies have provided converging evidences that conflict-related LFO at FCz are generated in 
the mPFC [S5, S9, S16]. IPC was used as a measure of the extent to which oscillations in the mPFC 
and STN were phase-locked before the response [S2]. Analysis was done separately for task A and task 
B. Raw data were band-pass filtered between 2 and 8 Hz, and power and phase were computed for each 
STN channel and the FCz recording using the Hilbert transform. Then the magnitude of the average 



phase difference between the STN-LFP and EEG signal were calculated at each time point, averaged 
across trials and a sliding window (1.6 s) was applied for integrating over time [S2]. For specifically 
computing the pre-response change in IPC values were averaged across the time window from -3 to 0 
and divided by the mean peri-response (-5 to + 2s) value. This was done for each STN-channel and 
FCz recording separately and then averaged across STN channels for each participant resulting in one 
IPC value for each patient and task, which was used for regression analyses.  

In order to test whether inter-individual differences in modulation of IPC between FCz and 
STN predicted differences in adjustments of decision thresholds we applied linear regression analyses. 
We used the difference in FCz-STN IPC between task B and task A (positive values indicating 
increased phase coupling) as predictor and the corresponding change in threshold estimates derived 
from the NHDDM as dependent variable. Since elevated decision-thresholds are thought to improve 
the ability to control erroneous responses, a second regression with the same predictor was conducted 
using the change in accuracy during trials with an initial bidirectional coherence (see results) as 
dependent variable. To account for possible confounding effects of differences in drift rate we 
additionally repeated these regression analyses partialing out drift rate estimates (partial regression). 
Note that we did not use the parameter estimates from the HDDM, because the hierarchical design 
violates the assumption of independence of observations. Prior to conducting regression analyses we 
ensured that assumptions of linear regression were not violated including independence of 
observations, lack of outliers (> 3*SD), and approximate normal distribution of residuals. The 
significance threshold for was set to 0.05 two-tailed. 
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