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SUMMARY

If humans are faced with difficult choices when mak-
ing decisions, the ability to slow down responses be-
comes critical in order to avoid suboptimal choices.
Current models of decision making assume that the
subthalamic nucleus (STN) mediates this function by
elevating decision thresholds, thereby requiring
more evidence to be accumulated before responding
[1–9]. However, direct electrophysiological evidence
for theexact roleofSTNduringadjustmentofdecision
thresholds is lacking. Here, we show that trial-by-trial
variations in STN low-frequency oscillatory activity
predict adjustments of decision thresholds before
subjects make a response. The relationship between
STN activity and decision thresholds critically de-
pends on the subjects’ level of cautiousness. While
increased oscillatory activity of the STN predicts
elevated decision thresholds during high levels of
cautiousness, it predicts decreased decision thresh-
olds during low levels of cautiousness. This context-
dependent relationship may be mediated by
increased influence of the medial prefrontal cortex
(mPFC)-STN pathway on decision thresholds during
high cautiousness. Subjects who exhibit a stronger
increase in phase alignment of low-frequency oscilla-
tory activity in mPFC and STN before making a
response have higher decision thresholds and
commit fewer erroneous responses. Together, our re-
sults demonstrate that STN low-frequency oscillatory
activity and corresponding mPFC-STN coupling are
involved in determining how much evidence subjects
accumulate before making a decision. This finding
might explain why deep-brain stimulation of the STN
can impair subjects’ ability to slow down responses
and can induce impulsive suboptimal decisions.

RESULTS AND DISCUSSION

The main goal of this study was to test whether neural activity of

the subthalamic nucleus (STN) is related to modulations of deci-
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sion thresholds during perceptual decision making. This has

been suggested by computational models of decision making

[1, 4] and studies using fMRI [3, 6]. Here, we directly recorded

STN local field potentials (LFPs) in Parkinson’s disease (PD) pa-

tients through electrodes implanted in the STN several days after

deep-brain stimulation (DBS) surgery, while patients performed

two versions of a moving dots task [10]. In both tasks, coherence

rates of the moving dots linearly increased over time until 50% of

all dots moved coherently in one direction. Participants pressed

a button with their right or left index finger as soon as they

perceived that the majority of dots were moving in the right or

left direction. This design allowed us to assess neural activity,

which is not related to abrupt stimulus changes or motor prepa-

ration, because changes in spectral STN activity were observed

well before any choice was executed. Combining single-trial LFP

analysis and drift diffusion modeling (DDM) allowed us to eluci-

date context-dependent relationships between single-trial oscil-

latory STN activity and features of decision making, which are

not evident with conventional analyses of reaction times (RTs)

and accuracy rates. For a detailed analysis of trial-averaged

time frequency spectra related to the tasks, the reader is referred

to previous reports by Zavala and colleagues [11, 12].

In task A, differences in the rate at which dots increased coher-

ence were used to alter the rate of sensory evidence accumula-

tion (left column in Figure 1A). Trials with low unidirectional

coherence had significantly higher RTs relative to trials with

medium unidirectional coherence (mean RT increase 38.1% ±

13.5 SD, z(10) = 2.934, Pcorrected = 0.012). Conversely, trials with

high unidirectional coherence had significantly lower RTs relative

to medium unidirectional coherence (mean RT decrease

22.4% ± 8.1 SD, z(10) = �2.934, Pcorrected = 0.012). Changing

coherence in task A did not affect accuracy rates (change in

accuracy during low unidirectional coherence relative tomedium

unidirectional coherence �3.7% ± 7.7 SD, z(10) = �1.481,

Pcorrected = 0.556; change in accuracy during high unidirectional

coherence relative tomedium unidirectional coherence�1.8%±

4.1 SD, z(10) = �1.680, Pcorrected = 0.372), see Figures 1B–1D. In

task B, in 50% of trials the number of dots moving coherently

both to the right and left increased until 0.83 s, after which the

dots moving into the incorrect direction no longer increased in

coherence, while the dots moving into the correct direction

further increased coherence (right column in Figure 1A). There

was thus no relative evidence for either direction in the first

0.83 s, particularly as neural integrators are thought to integrate

the difference in dot coherence [13]. The remaining trials in task B
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Figure 1. Experimental Tasks and Behavioral Analyses

(A) Experimental tasks A and B. In task A (first column), the rate of coherently moving dots changed between conditions (low, medium, and high unidirectional

coherence). Black traces illustrate how coherence changed over time in the different conditions. In task B, 50% of trials showed dots moving coherently in

opposite directions until dots moving in the incorrect direction were capped (red trace in right upper panel), while the remaining 50% of trials were identical to

medium unidirectional coherence trials in task A.

(B) RT histograms and accuracy rates of all conditions are shown.

(C and D) Effects of the experimental manipulations on RT and accuracy. Columns reflect delta values. Error bars indicate SD. Asterisks indicate significance at

pcorrected 0.05.
were identical to trials with medium unidirectional coherence in

task A. However, RTs in these trials in task B were significantly

higher compared to identical trials in task A (relative increase in

RT: 15.7% ± 17.1 SD, z(10) = 2.578, Pcorrected = 0.040), while

accuracy was similar (change in accuracy 0.1% ± 5.6 SD,

z(10) =�0.105, Puncorrected = 0.917; Figures 1B–1D). This observa-

tion was in line with our a priori hypothesis that the presence of

intermixed trials with initial bidirectional coherence in task B

increased patients’ level of cautiousness. Thus, they accumu-

lated more evidence before making a decision in trials with me-

dium unidirectional coherence in task B compared to task A.

Finally, in task B RTs were similar in trials with initial bidirectional

coherence and trials with unidirectional medium coherence (dif-

ference in RT: 4.3% ± 9.4% SD, z(10) = 1.511, Pcorrected = 0.524),

while accuracy significantly decreased by 5.6% ± 4.9% SD

(z(10) =�2.668, Pcorrected = 0.032; Figures 1B–1D). This finding in-

dicates that participants committed more erroneous responses

in trials with initial bidirectional coherence when they did not

accumulate sufficient evidence.

In order to test whether the observed behavioral effects could

be related to modulation of the rate of evidence accumulation

and decision thresholds, wemodeled these latent processes un-

derlying the observed behavior in the drift diffusion framework

[14]. In DDM, sensory evidence is accumulated over time until
the integrated evidence crosses the decision threshold and the

choice is executed (see third column in Figure 2A). We applied

a hierarchical Bayesian estimation of DDM parameters

(HDDM), which is particularly suited for studies with relatively

few trials [15]. As expected from the behavioral results, changing

the amount of coherently moving dots significantly modulated

drift rates; i.e., drift rates were lower in trials with low unidirec-

tional coherence and initial bidirectional coherence and higher

in trials with high unidirectional coherence compared to trials

withmedium unidirectional coherence (100%posterior probabil-

ity for all effects being different than 0). Including trials with initial

bidirectional coherence in task B significantly elevated decision

thresholds, i.e., thresholds were higher in task B compared to

task A (100% posterior probability). Please see Figure S1 and

Supplemental Experimental Procedures for more details. This

model had much stronger evidence compared to models pro-

posing only changes in drift rate (difference in deviance informa-

tion criterion [DIC], 34) or threshold (difference in DIC 121) and

adequately predicted the observed behavior (Figure S1). We

additionally validated HDDM by applying a non-hierarchical

DDM (NHDDM) to the data, which yielded highly similar model

parameter estimates at the group and individual subject level

(Figure S2), and by applying HDDM to a simulated dataset (Fig-

ure S3; see also Supplemental Experimental Procedures). The
Current Biology 26, 916–920, April 4, 2016 ª2016 The Authors 917



Figure 2. HDDM Analysis

(A) The time frequency plots show a pre-response increase in LFO power (time 0 indicates the response) relative to baseline averaged across conditions in both

tasks (first column). Single trial LFPs were Z-scored for each task separately before entering them into the HDDM (second column). In DDM, t is the non-decision

time (e.g., related to afferent delays and motor execution), and v is the drift rate indicating the rate of evidence accumulation until threshold a is reached and the

response is executed (third column). Blue and red traces are examples of a single correct and incorrect response, respectively. Please note that this is a

schematic illustration and does not show the actual model parameters.

(B) Illustration of HDDM. Parameters a, v, and t were estimated simultaneously for the group (circles outside the plates with group mean m and variance s) and

subjects S (circles in outer plate). Variations in a and v were modulated by experimental manipulations (coh, coherence: trials with low and high unidirectional

coherence and trials with initial bidirectional coherence relative to medium unidirectional coherence; task, task B relative to task A) at each trial T (circles in inner

plate). Observed data are represented by shaded circles. They comprised responses (with RT and accuracy) and single-trial STN activity. The four neural HDDMs,

which were compared, are shown in the box under the HDDM graphic. Please see Figure S1 for parameters of the HDDMwithout neural data and Figures S2 and

S3 for validation of the HDDM.

(C) Model comparison. DIC values are shown relative to DIC of the HDDM not containing any neural data. Relative DIC were �29 (model 1), +30 (model 2), �8

(model 3), and �4 (model 4).
observation that participants did not have significantly longer

RTs in trials with an initial bidirectional coherence compared to

trials with medium unidirectional coherence in task B indicates

that decision thresholds might have changed not only between

tasks, but also between conditions in task B. Allowing thresholds

to change between conditions in task B in HDDM showed that

thresholds were higher in both conditions in task B compared

to task A (> 99% posterior probability), but also higher in the me-

dium unidirectional coherence trials in task B compared to trials

with initial bidirectional coherence (>99% posterior probability).

Nevertheless, as the main aim of this study was to investigate

the role of the STN during perceptual decision making, we

used a less complex, a-priori-defined model postulating thresh-

olds adjustments between tasks, not conditions, below.

Accordingly, we assessed whether trial-by-trial measure-

ments of STN activity—as reflected by LFP changes before the

response—modulated different latent decision-making parame-

ters at each trial using HDDM regression analysis. To this

end, we computed single trial estimates of STN power in the

time period preceding participants’ responses (from �3 s until

the response) and Z-scored these values separately for task

A and B before including them in the HDDM (Figures 2A and

2B). We then estimated and compared four neural HDDMs

based on a-priori-defined hypotheses, which differed in the pre-

cise frequency range of STN-LFP activity (2–8 Hz low-frequency

oscillations [LFOs] versus 13–30 Hz beta oscillations) and the

latent variable, which was modified by STN activity (threshold

versus drift rate). Of note, there was no significant overall differ-

ence in pre-response STN LFO power between task A and B (t =

1.646, p = 0.115). Allowing trial-by-trial STN-LFO to modulate

threshold estimates in the HDDM significantly improved model
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evidence compared to the model not containing any neural

data (difference in DIC 29), and also clearly outperformed the

alternative neural HDDMs (Figure 2C). Thus, model selection

provided strong evidence that trial-by-trial variations in decision

thresholds are modulated by STN-LFO.

Next, we aimed to investigate the exact relationship between

STN-LFO and decision thresholds. To this end, we analyzed

how decision thresholds varied as a function of STN LFO during

both tasks by inspecting the posterior probability distribution of

model parameters. We found a significant main effect of task, a

significant main effect of STN-LFO and, critically, a significant

interaction between task and STN-LFO (100% posterior proba-

bility for all parameters being different than 0, see Figure 3A).

This interaction indicates that the effect of STN-LFO on decision

thresholds critically depends on the level of cautiousness, which

was higher in task B (see above). These results did not change

when using non-Z-scored single trial estimates of STN activity

or when using different wavelet lengths for computing STN po-

wer (see Supplemental Experimental Procedures). Post hoc

tests of the effect of STN-LFO in task A (low cautiousness) and

task B (high cautiousness) revealed that high power of STN-

LFO predicted decreased decision thresholds in task A (100%

posterior probability), while it predicted elevated decision

thresholds in task B (95% posterior probability; Figure 3B).

This context-dependent relationship did not change when using

a more complex model where thresholds could vary between all

conditions. In this additional control analysis all significant

regression coefficients were negative in task A (100%probability

for trials with low and high unidirectional coherence) and positive

in task B (100% probability for trials with initial bidirectional

coherence).



Figure 3. Neural Modulations of Decision Thresholds

(A) Posterior probabilities formodulation of decision thresholds by task (task B relative to task A), LFO, and their interaction. Peaks reflect the best estimates, while

width represents uncertainty.

(B) Post hoc analysis showed an opposite relationship between LFO and thresholds for task A and B.

(C) Second (group) level regression between change in FCz-STN coupling (task B versus task A) and adjustments of decision thresholds derived from NHDDM

(p = 0.032).

(D) Regression between change in FCz-STN coupling and participants’ ability to control erroneous responses during trials with initial bidirectional coherence

(p = 0.007).
These results indicate that STN activity, as reflected by LFO,

does not simply reflect increases in decision thresholds, but

that this relationship critically depends on the level of cautious-

ness. A possible explanation for this observation is a flexible

reorganization of cortico-STN networks depending on task de-

mands enabling the medial prefrontal cortex (mPFC) to increase

its influence over STN function [2–4, 7, 9, 11, 16]. To test this

hypothesis, we analyzed connectivity between electroencepha-

lography (EEG) electrode FCz and STN by computing the inter-

site-phase clustering (IPC) (see Supplemental Experimental

Procedures) reflecting how reliably the phases of oscillations in

FCz and STN were aligned prior to the response. We then tested

whether the extent to which IPC changed between task A and B

predicted howmuch participants adjusted their decision thresh-

olds estimated using NHDDM. This analysis showed that while

there were no overall changes in FCz-STN IPC between tasks

(z(10) = 1.067, p = 0.286) the extent to which participants

increased FCz-STN IPC significantly predicted adjustments in

decision thresholds (r2 = 0.416, p = 0.032), see Figure 3C.

Furthermore, adjustments in FCz-STN IPC also predicted partic-

ipants’ ability to control erroneous responses (r2 = 0.579, p =

0.007), see Figure 3D. Of note, these results stayed significant

even when accounting for individual differences in drift rates
(thresholds: r2 = 0.413, p = 0.045; accuracy: r2 = 0.601, p =

0.008). These results suggest that mPFC-STN communication

through phase alignment might be an important mechanism for

adjusting decision thresholds and thereby controlling erroneous

responses when participants are more careful in making deci-

sions, although it should be noted that regression analyses

were based on relatively few observations (n = 11).

In conclusion, we report three novel findings in this study. First,

our results demonstrate for the first time that oscillatory STN ac-

tivity reflects trial-by-trial modulations of decision thresholds,

i.e., how much evidence subjects integrate before making a

decision. This relationship is specific for the latent mechanism

underlying decision making (thresholds, but not drift rates) and

frequency range of oscillatory activity (LFO, but not beta oscilla-

tions). Second, we show that STN activity does not uni-direction-

ally increase decision thresholds but can have opposing effects

on thresholds depending on subjects’ level of cautiousness.

Finally, we found that modulations of the phase alignment

between mPFC and STN, a mechanism that might optimize

information transfer between these two regions [17], predicts ad-

justments of decision thresholds and participants ability to con-

trol erroneous responses. Thus, a context-dependent integration

of STN in dynamic cortico-STN networks might be critical in the
Current Biology 26, 916–920, April 4, 2016 ª2016 The Authors 919



ability to adjust behavior to changing environments and give rise

to the context-specific relationships between STN activity and

modulation of decision thresholds observed in this study. This

neural mechanism might be affected in individuals who express

impulsive behavior during therapeutic stimulation of the STN

[2, 4, 5]. It remains to be elucidated whether such unwanted ef-

fects of DBS can be avoided by specifically targeting abnormal

(beta) oscillations in PD [18] leavingmodulations of LFO relatively

intact.
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Supplemental figures: 
 

 
 
Figure S1: HDDM without neural data. Related to figure 2. (A) Main effects on decision thresholds 
and drift rates of the HDDM not containing any neural data. The left panel shows the posterior 
distribution of the regression coefficient for the effects on the decision thresholds. The right panel 
shows the posterior distribution of coefficients for the effects on drift rates. Peaks reflect the best 
parameter estimate, while the width of the distribution represents uncertainty. All posterior 
distributions are shifted away from zero (i.e. they do not overlap with 0 on the x-axis) and thus have 
100% posterior probability to be different than 0. Note that threshold regression coefficients (left 
panel) are shown relative to task A, i.e. the threshold estimate during task A constitutes the intersect in 
the regression. Similarly, drift rate regression coefficients (right panel) are shown relative to drift rate 
during medium coherence (see also Supplemental Experimental Procedures). (B) Quantile probability 
plots. Observed mean reaction times (RT) for five quantiles (10, 30, 50, 70 and 90 %) are marked by a 
cross and plotted against their cumulative probability for the five conditions separately. Predicted 
quantile mean RTs are marked as ellipses with the width capturing estimation uncertainty (standard 
deviation of the posterior predictive distribution from the model). The plot shows that the HDDM 
provided overall good predictions of the observed data and, more importantly, captured effects of task 
manipulations on RT. For example, it predicts an RT shift upwards from high to low unidirectional 
coherence trials as well as increased RT in medium unidirectional coherence trials in task B compared 
to medium unidirectional coherence trials in task A. Due to the low number of error trials quantile 
probability plots are only shown for correct trials. Nevertheless, predicted error rates can be evaluated 
by the predicted cumulative probabilities along the x-axis (e.g. poor predictions of error rates would 
results in incongruencies between predicted and observed quantile RT along the x-axis). 
 



 
 
Figure S2: Non-hierarchical DDM (NHDDM). Related to figure 2. (A) Drift rate slope parameters 
estimated from the NHDDM showed a significant difference in drift rate slopes in low compared to 
medium unidirectional coherence trials (-0.022 ± 0.015 SD, z(10) = -2.756, Pcorrected = 0.012) and high 
compared to medium unidirectional coherence trials (0.040 ± 0.031 SD, z(10) = 2.845, Pcorrected = 0.008; 
Wilcoxon signed rank tests). Thus, the mean effects of coherence manipulations on drift rates were 
similar to the ones obtained from the HDDM (figure S1). Note that in the NHDDM there was no 
separate drift rate slope for trials with initial bidirectional coherence, since these drift rate slopes were 
modeled as medium drift rate slopes with an 0.83 s delay according to the delayed onset of relative 
increase in evidence accumulation in this condition. The correlation plots show that drift rate 
parameters estimated from NHDDM and HDDM were also proportionally similar, i.e. participants with 
high drift rate slopes in NHDDM had high drift rates in the HDDM and vice versa (low coherence: rho 
0.892, Pcorrected = 0.003, medium coherence: rho 0.824, Pcorrected = 0.006, high coherence: rho 0.785, 
Pcorrected = 0.012; Pearson correlations). (B) Like the HDDM, NHDDM threshold parameters showed a 
significant increase in threshold in task B compared to task A (0.024 ± 0.031 SD, z(10) = 2.223, P = 
0.026; Wilcoxon signed rank test). Furthermore, threshold parameters were also proportionally similar 
as indicated by correlation analyses (task A: rho 0.822, Pcorrected = 0.004, task B: rho 0.682, Pcorrected = 
0.042, Pearson correlations). Note that parameters estimated in HDDM are scaled with a factor of 10 
compared to ‘traditional’ DDM values (e.g. a drift rate of 0.1 in the NHDDM corresponds to a drift rate 
of 1 in HDDM). (C) Quantile probability plots. Observed mean RTs for four quantiles (20, 40, 60 and 
80 %) are marked by a cross and plotted against their cumulative probability for the five conditions 
separately. Predicted quantile mean RTs are marked as circles. The plot shows that the NHDDM, like 
the HDDM, provided overall good predictions of the observed data and captured effects of task 
manipulations on RT (see also figure S1).  
 
 
 



 
 
Figure S3: Results of the simulation analysis. Related to figure 2. A dataset (RT and accuracy) was 
simulated based on threshold and drift rate slope parameters of a representative patient (patient with 
parameters closest to the group mean). HDDM was the fitted to this simulated dataset. (A) We 
compared different models, which differed in the decisiosn parameter, which was modulated during the 
tasks (drift rate and threshold, only drift rate or only threshold) and the experimental manipulation, 
which modulated these latent parameters (coherence and task, only coherence and only task). The true 
model, which was used for simulating the dataset, consisted of a drift rate slope modulation by 
coherence rate and a threshold modulation by task. This model was also clearly the best model 
according to its DIC (first column in (A); DIC difference to next best model 27), i.e. HDDM model 
evidence favored the true model over the alternative models. DIC values for all models were: model S1 
(a ~ task, v ~ coh) 4336, model S2 (v ~ task, a ~ coh) 4429, model S3 (v ~ coh) 4363, model S4 (a ~ 
task) 4426, model S5 (v ~ task) 4449, model S6 (a ~ coh) 4427. The recovered parameters are shown in 
(B), with a significant change in threshold in task B vs. task A and significant changes in drift rates in 
trials with low and high unidirectional coherence compared to trials with medium unidirectional 
coherence (100% posterior probability for all parameter estimates being different than 0). Interestingly, 
the model was also able to recover that the true drift rate manipulation during low unidirectional 
coherence was stronger than the change in drift rate during high unidirectional coherence (relative 
change in the drift rate slope used for simulation was -0.028 for low unidirectional coherence and 
+0.021 for high unidirectional coherence). (C) shows quantile probability plots with observed (cross) 
and predicted (ellipses) RT distribution for the four considered conditions. As in figure S1, the width of 
ellipses indicates estimation uncertainty (standard deviation). 
 



Supplemental tables: 
 
Patient Age Disease  

duration 
UPDRS-
III OFF 

UPDRS-
III ON 

First symptom Reason for 
surgery 

Medication  

1 49 10 42 6 Tremor Tremor Levodopa 300;  
Trihexyphenidyl 2 

2 50 4 N/A N/A Tremor Tremor Levodopa 400; 
Rotigotine 16; 
Entacapone 600 

3 66 16 32 13 Loss of dexterity Bradykinesia Levodopa 600; 
Ropinirole 24; 
Rasagiline 1; 
Amantadine 200;  

4 51 7 58 13 Loss of sense of 
smell 

Tremor, gait 
difficulties 

Levodopa 1300 

5 64 12 70 20 Tremor Dyskinesias Levodopa 1200;  
Apomorphine 7 mg/h 

6 47 14 34 11 Bradykinesia Dyskinesias, 
motor 
fluctuations 

Levodopa 350; 
Pramipexole 1.05; 
Amantadine 300 

7 66 14 63 24 Shoulder pain, 
stiffness 

Motor 
fluctuations 

Levodopa 650; 
Pergolide 9 
 

8 57 6 21 7 Bradykinesia Dyskinesias, 
motor 
fluctuations 

Levodopa 750;  
Entacapone 1000 

9 61 4 37 15 Tremor Tremor Levodopa 750; 
Amantadine 200; 
Entacapone 1000 

10 65 15 51 21 Tremor Freezing Levodopa 400; 
Ropinirole 12; 
Amantadine 200 

11 42 9 60 42 Loss of dexterity Bradykinesia, 
dystonia, 
freezing 

Levodopa 600;  
Amantadine 400  

mean 56.2 10.1 46.8 17.2    
 
Table S1: Clinical and demographic characteristics of included patients. Age is given in years, 
medication is given in mg/day unless otherwise stated. N/A, not available. 
 
Supplemental Experimental Procedures: 
 
Participants 
Eleven patients (six males, mean age 56.2 years ± 8.7 (standard deviation, SD), mean disease duration 
10.1 years ± 4.4 SD) with Parkinson’s disease (PD) undergoing deep brain stimulation (DBS) of the 
subthalamic nucleus (STN) were enrolled in the study (for clinical details see table S1). In all patients a 
quadripolar macroelectrode (model 3389, Medtronic Neurologic Division, Minneapolis, MN, USA) 
featuring four platinum-iridium cylindrical surfaces was implanted in bilateral STN. Lead localization 
was confirmed either by intra-operative stereotactic magnetic resonance imaging or by the clinical 
effect during the operation and immediate post-operative stereotactic computerized tomography. DBS 
electrode extension cables were externalized enabling recordings prior to implantation of a 
subcutaneous pacemaker up to seven days later. 

A healthy control group could not be included in the study due to the invasive nature of 
electrode implementation. However, in order to approximate physiological function of STN as closely 
as possible, all recordings were conducted in patients on their normal medication. Importantly, the 
dopaminergic state in PD does not affect decision thresholds [S1], which were the main focus of this 
study. Mean improvement in motor function as indexed by Unified Parkinson’s Disease Rating Scale-
III was 63.9 % ± 14.8 SD after a levodopa challenge indicating a very good dopamine response in the 
studied patient group. All patients completed the two experimental tasks consecutively on the same 
day, three to six days after electrode implantation. In accordance with the Declaration of Helsinki, all 



patients gave their written informed consent to participate in the study, which was approved by the 
local ethics committee. Of note, data of the same patient group has been reported previously 
concerning separate group analysis of averaged time frequency spectra during the tasks [S2, S3]. Here, 
for the first time, we demonstrate that trial-by-trial variations of STN activity (which are considered 
noise in averaged time-frequency spectra) predict context-dependent adaptations of decision-thresholds 
during perceptual decision-making. 
 
Paradigms 
The experimental tasks have been described in detail previously [S2, S3] and are illustrated in Fig. 1A. 
A cloud of 200 randomly moving white dots was presented on a black background. The tasks were 
presented on a 33 cm Macintosh laptop with a 60 Hz screen refresh rate using PsychoPy [S4]. The 
cloud was 14 cm in diameter and dots were 10 pixels large (visual angle ≈ 0.25°). Each randomly 
moving dot moved in a straight line at a rate of 0.14 mm per frame for 20 frames (333 ms) before 
moving to another part of the cloud and moving in a new direction chosen pseudorandomly between -
180° and 180°. Participants were instructed to indicate the overall direction of dots whenever they 
noticed that the cloud was moving to the left or to the right side. They were instructed to respond as 
fast and accurately as possible, i.e. to balance speed and accuracy. Choices were indicated by a left 
(“z”) or right (“/”) button press on a keyboard with the left and right index finger, respectively. 
Participants performed task A first. The task comprised three randomly interspersed conditions. During 
trials with high unidirectional coherence the number of dots moving coherently into either the left or 
right side of the screen increased linearly from 0% to 50% within 2.083 s (corresponding to 0.004% per 
frame). During trials with medium and low unidirectional coherence 50% coherence was reached after 
4.17 s (0.002% increase per frame) and 8.333 (0.001% increase per frame), respectively. In task B, 
participants were told that in some of the trials dots would start moving in opposite directions instead 
of just one direction. In these trials the number of dots moving coherently both to the right and left 
increased at the same rate until 0.83 s. After 0.83 s, the dots moving in the incorrect direction no longer 
increased in coherence (i.e. they were capped at 10% of all 200 dots), while the dots moving into the 
correct direction further increased their coherent motion until reaching 50% coherence after 4.17s. The 
remaining trials of task B were identical to trials with medium unidirectional coherence in task A (i.e. 
the number of dots moving coherently in one direction increased linearly from 0% to 50% within 
4.17s). In both tasks, all trials were pseudo-randomly presented with equal probability (28 of 84 trials 
per condition in task A, 40 of 80 trials per condition in task B). Visual feedback (“incorrect”) was 
provided for a duration of 0.75 s only in case of erroneous responses or prolonged response times > 14 
s. Before each trial, dots moved randomly for a time period between 2 and 4 s. Prior to commencement 
of recordings participants could practice the tasks as long as they wished (usually < 10 trials). 
We chose to use coherence rates, which linearly increased over time in contrast to time-invariant 
coherence differences between conditions in order to avoid presenting subjects with an explicit cue in 
the beginning of each trial. Thus, at no point subjects were given a ‘cue’ indicating that the trial had 
begun. After the subject made the response for a given trial, all dots immediately began to move in 
random direction for a duration of 2 - 4 s before slowing starting to move coherently again for the next 
trial. This design allowed us to assess neural activity, which is not related to abrupt stimulus changes or 
motor preparation, because the changes in spectral STN activity were observed well before the choice 
was executed [S2, S3]. 
 
Analysis of behavioral data  
All trials with RT > 8 s or < 0.25 s were discarded from further analyses. There were three main 
experimental manipulations during the tasks. First, an increase (high unidirectional coherence) or 
decrease (low unidirectional coherence) in the rate of coherently moving dots relative to trials with 
medium unidirectional coherence in task A. Second, the difference between identical trials with 
medium unidirectional coherence rates in task B and task A, which only differed regarding the 
presence of intermixed trials with initial bidirectional coherence in task B. We hypothesized that the 
presence of such trials would increase participants’ level of cautiousness due to the increased task 
demands. Third, the difference between trials with initial bidirectional coherence and medium 
unidirectional coherence trials in task B. The first 0.83s in the former trials did not convey any relative 
evidence for either direction.  
To assess effects on reaction times (RT) and accuracy rates we computed the relative change in RT 
(e.g. (RT during high unidirectional coherence – RT during medium unidirectional coherence) / RT 
during medium unidirectional coherence) and accuracy rates (e.g. (Accuracy during high unidirectional 
coherence – Accuracy during medium unidirectional coherence) / Accuracy during medium 
unidirectional coherence) and used non-parametric one-sample Wilcoxon signed-rank tests to test the 



resulting values against a median of 0 using SPSS statistics (v22, IBM, New York, USA). The 
significance threshold was set to 0.05 adjusting for multiple comparisons using the Bonferroni method. 
 
Analysis of trial-by-trial LFPs 
Local field potentials (LFP) were recorded from DBS electrodes. In addition, electroencephalography 
(EEG) was recorded from FCz, Cz and Pz according to the international 10-20 system. A wider 
coverage with EEG electrodes was not possible due to surgical wounds and dressings. Preprocessing of 
electrophysiological data was identical to the procedures reported previously [S2, S3]. In short, all 
signals were sampled at 2048 Hz, band-pass filtered between 0.5 and 500 Hz, amplified (TMSi porti, 
TMS International, Enschede, The Netherlands), down-sampled to 1000 Hz and notch filtered at 50 Hz. 
LFPs were then converted to a bipolar montage between contacts (three channels per STN) and EEG 
electrodes were re-referenced to Cz to limit effects of volume conduction. Trials with clear artifacts 
were discarded. After removal of trials with artifacts and behavioral outliers, 29.5 trials per subject and 
condition and 1621 trials in total remained. Power and phase of LFPs were computed using the 
continuous wavelet transform (1 Hz frequency resolution, 10 cycles per frequency) and resulting time 
frequency spectra were chunked into individual trials based on the onset of the motor responses for 
each task separately. To control that the relatively long wavelets did not lead to smearing of LFP power 
across trials, we repeated this analysis using 5 cycle wavelets. Single trial power estimates of low 
frequency oscillations (LFO, see below) using 10 cycle wavelets and 5 cycle wavelets, respectively, 
were highly correlated (rho = 0.95, Spearman correlation over all trials) and yielded identical results in 
the HDDM analysis (see below; data is only shown for the analysis using 10 cycle wavelets). Since 
group analysis of time-frequency spectra during the tasks showed a sustained pre-response increase in 
LFO from approximately 3 s prior to the button presses [S2, S3], see also fig. 2A, power values were 
extracted from -3 to 0 seconds. In case response time in a given trial was < 3 s (median RT was 3.113 
s) time windows for extracting single-trial pre-response power values were restricted to –RT to 0 in 
order to avoid modeling STN activity prior to trial onset. Single trial estimates were then averaged 
across the respective time window and frequencies (2-8 Hz and 13-30 Hz, see below) and normalized 
to the mean power of those frequencies in the peri-response window (-3 to +2 s) of each participant and 
finally averaged across all STN electrodes. We chose to average across STN electrodes in order to 
avoid selection bias, even though this procedure might underestimate spectral changes. Importantly, 
neither STN -power, nor -FCz connectivity values differed regarding localization on the dorso-ventral 
STN axis [S2]. The 2-8 Hz window was chosen, because increases in LFO and cortico-STN 
connectivity in the current tasks did not have a clear lower boundary at 4 Hz (theta) [S2, S3], which is 
in agreement with previously reported motor conflict-related power changes in STN [S5, S6].  Beta 
power (13-30 Hz) was included, because of its central role in motor processing in the STN [S7]. To 
assess whether there were overall differences in pre-response LFO power between task A and B we 
compared power values (averaged over the 2-8 Hz frequency window and fixed -3 to 0s time window) 
using paired samples t-test. 
 
Drift diffusion modeling 
The goal of drift diffusion modeling (DDM) in this study, was to investigate whether trial-by-trial 
fluctuations in pre-response STN power were related to modulations of latent processes underlying 
perceptual decision making and whether this relationship was specific to the frequency range of 
oscillatory activity (LFO vs. Beta) and decision-making process (decision threshold vs. drift rate). A 
Bayesian hierarchical DDM (HDDM) has been developed and optimized for such purposes allowing 
regression of trial-by-trial variations in brain activity on decision parameters [S8]. Importantly this 
toolbox is also particularly suited for studies with low trial counts [S5, S8, S9], such as the current 
study with restrictions on the possible duration of the experiment due to vulnerability of the studied 
patient group. In DDM choices between two alternative options (here pressing the left or right button) 
are simulated by a noisy process in which evidence is accumulated over time (here the fraction of dots 
moving into different directions) until the evidence for one choice over the other is sufficient and the 
response is executed. There are two main parameters of interest in DDM. First, the rate of evidence 
accumulation is reflected by the drift rate v, which critically depends on the presented stimulus. Thus, 
in the current tasks drift rate was assumed to be modulated by the rate of change in coherently moving 
dots (manipulations in task A) and a delay in relative evidence accumulation due to dots moving into 
opposite directions (manipulation in task B). Second, the decision threshold a determines how much 
evidence has to be accumulated until a decision is made and thus reflects a measure of cautiousness. In 
this study, this parameter was assumed to be modulated by the presence of intermixed trials with an 
initial bidirectional coherence in task B, i.e. task B vs. task A (see also results of the behavioral 
analysis). A third parameter is the non-decision time t reflecting processes unrelated to the decision 



(e.g. sensory processing in visual areas and motor execution). These parameters are estimated by the 
model based on the observed behavior, i.e. accuracy and response times. DDM has been shown to 
reliably detect these latent decision-making parameters throughout a variety of different behavioral and 
neurophysiological experiments over the last few decades [S10]. In the recently developed HDDM the 
trade-off between random and fixed effects models is optimized by assuming that parameters from 
individual subjects are drawn from the group distribution while allowing variation from this 
distribution given sufficient evidence to overwhelm the group prior [S8]. Parameters for each subject 
and condition were modelled according to a normal (real valued parameters) or Gamma distribution 
(positive valued parameters) centered on the group mean with group variance. Prior distributions were 
informed by 23 previous studies reporting parameters on a range of decision-making tasks [S8]. The 
starting parameter z (often referred to as bias parameter) was fixed to 0.5, because dots moving to the 
right or left had equal probability, i.e. participants were not biased toward right or left responses in the 
experimental tasks. Markov chain Monte Carlo sampling methods were used for accurate Bayesian 
approximation of the posterior distribution of parameters (generating 20 000 samples, discarding 10 
000 samples as burn-in and keeping every fifth sample). We inspected traces of model parameters, 
their autocorrelation and computed the R-hat (Gelman-Rubin) convergence statistics to ensure that the 
models had properly converged [S8]. 

First we assessed basic assumptions of the model without including any neural data. This 
comprised modulations of drift rate by differences in the rate of coherence, where we a-priori expected 
a decrease in drift rate in trials with low unidirectional coherence and trials with an initial bidirectional 
coherence and an increase in drift rate in trials with high unidirectional coherence relative to trials with 
medium unidirectional coherence as well as modulations of threshold by task with an increased 
threshold in task B relative to task A. We validated our model assumptions (both drift rate and 
threshold were modulated by the experimental manipulations) by testing that this model had stronger 
evidence than models postulating only a change in drift rate or threshold respectively, using the 
deviance information criterion (DIC). DIC is widely used for comparisons of hierarchical models 
where other measures (e.g. Bayesian information criterion) are not appropriate [S8, S9]. A lower DIC 
value for a given model (for the whole group) indicates higher likelihood for that model compared to 
an alternative model taking into account model complexity (degrees of freedom). Usually a DIC 
difference of 10 is considered significant [S11]. Parameters of the best model were analyzed by 
Bayesian hypothesis testing, i.e. the percentage of samples drawn from the posterior that fall within a 
certain region (e.g. > 0). Posterior probabilities ≥ 95% were considered significant. Please note that this 
value is not equivalent to p-values estimated by frequentist methods (e.g. Wilcoxon signed rank tests 
during the analysis of behavioral data), but it can be interpreted in a similar manner. In the article, we 
refer to these estimates as posterior probabilities to clearly demarcate them from p-values. To assess 
model predictions we computed quantile probability plots, a popular measure for assessing model 
performance in the DDM framework [S10]. Here, observed and predicted RT for the 10, 30, 50, 70 and 
90 percentile of trials (e.g. 10% fastest trials, 30% fastest trials, etc.) were plotted against their 
observed and predicted cumulative probability for each condition. Due to the low number of error 
trials, we only plotted quantiles for correct trials (see figure S1).  

Of note, we made two simplifying assumptions when using HDDM. First, we did not 
explicitly model that a relative difference in coherence (i.e. to the left or right side) first started after 
0.83 s in 50% of trials in task B, but just assumed a different drift rate during these trials. Furthermore, 
we assumed that changing the rate of dot coherence over time would have a similar effect on evidence 
accumulation as a difference in dots coherence, which is constant over time. This assumption was 
supported by the observation that participants executed responses during equal levels of integrated 
evidence and not instantaneous evidence in task A [S3]. To validate this approach we also applied a 
non-hierarchical DDM using custom-written scripts in matlab (R2015a, The MathWorks, Natick, MA, 
USA), in which we specified the exact properties of the task. In particular this model assumed that drift 
rate in condition i was a linearly increasing function vi(t)=sit, where si is the slope parameter for 
condition i, and t is the time from onset of coherent motion, or the time from which coherence of dots 
moving in the correct direction was higher than the coherence of dots moving in the other direction on 
trials with an initial bidirectional coherence. We applied a previously validated method for non-
hierarchical estimation of model parameters using a subplex algorithm for minimizing the cost function 
defined as the difference between observed and predicted quantile RT distribution (20, 40, 60 and 80 
percentile) according to a least-squares estimation [S12]. The parameters comprised drift rate slopes s1 
(trials with low unidirectional coherence in task A), s2 (trials with medium unidirectional coherence in 
task A and B including a delayed onset of 0.83 s for trials with an initial bidirectional coherence in task 
B) and s3 (trials with high unidirectional coherence in task A), threshold a1 (task A) and a2 (task B) as 
well as the non-decision time t. The parameters were fitted to the observed data (10 iterations of 



random search for starting values, 70 optimization iterations, 50 tuning iterations and 20 repetitions of 
the whole process; please see Bogacz and Cohen [S12] for more details of the method), for each 
participant separately and the best model (least error) was used for inference on model parameters. The 
code can be made available upon request. This non-hierarchical DDM (NHDDM) allowed us to 
validate the HDDM method described above by specifying exact experimental manipulations (e.g. 
slope in drift rate) and furthermore allowed second (group) level regression analyses with neural 
parameters, which cannot be computed at the single trial level (inter-site-phase-clustering; see below). 
We compared results of the HDDM and NHDDM by assessing parameter estimates at the group and 
individual subject level and assessed NHDDM fits by computing quantile probability plots (figure S2).  

Finally, we validated the HDDM by fitting it to a simulated dataset. The simulation was based 
on estimated parameters derived from NHDDM for a representative patient (patient with parameters 
which were closest to the group mean). We simulated a dataset consisting of 300 trials per condition 
based on the number of trials for the whole group. We used conditions with low, medium and high 
unidirectional coherence in task A and medium unidirectional coherence in task B (i.e. 1200 trials) in 
order to model a manipulation of drift rate slope (low and high relative to medium unidirectional 
coherence) and threshold (medium unidirectional coherence in task B relative to medium unidirectional 
coherence in task A). We then assessed whether HDDM could successfully recover the true condition-
specific manipulations of parameters based on the simulated dataset. To this end, we computed model 
evidence (DIC) for the true model compared to alternative models comprising different possible 
combinations of drift rate and threshold modulations during the different conditions. Furthermore, we 
assessed whether the true parameter manipulations could be recovered (effects on drift rate and 
threshold) and compared the predicted with the observed RT distribution. This analysis showed that 
HDDM successfully recovered the true parameter manipulations, which is shown in figure S3.  
After verifying assumptions of the HDDM applied in this study, we then entered trial-by-trial STN-
LFPs (z-scored) into the HDDM to test whether fluctuations in STN activity modulated decision-
making parameters. We z-scored single trial estimates of STN power by subtracting the mean and 
dividing by the standard deviation separately for task A and task B. To further assess intercept issues, 
we repeated the HDDM analysis using non-z-scored data, which yielded identical results. Thus, 
regression coefficients between STN-LFPs and the decision parameter were estimated within the same 
hierarchical model, which was used to estimate the parameters themselves. For example, the model 
postulating that decision threshold a on trial x was not only modulated by Task but also STN-LFO (and 
their interaction) was defined by the regression: a(x) = β0 + β1Task(x) + β2LFO(x) + β3Task(x)*LFO(x)   
Regressing across trials allowed inferences on the extent to which threshold changes with STN activity 
[S8]. We created four a-priori defined models which differed regarding the frequency band of STN 
power (LFO vs. Beta) and the decision parameter which was modulated (threshold vs. drift rate), see 
Fig. 2B. These models were then compared using their DIC (relative to the model not containing any 
neural data). The best model was used for inferences on model parameters using Bayesian hypothesis 
testing, i.e. according to their posterior probability densities (see above). Posteriors of regression 
coefficients for trial-wise regressors were estimated only at the group level to address potential 
collinearity among model parameters, for regularizing parameter estimates and to prevent parameter 
explosion [S8, S9]. 
 
Analysis of FCz-STN inter-site-phase-clustering and regression analyses 
Models of basal ganglia function during decision-making postulate that decision thresholds can be 
adjusted through activation of a connection between mPFC and STN in case of choice uncertainty or 
decision conflict [S2, S5, S9, S13-15]. To test this hypothesis, we aimed to assess whether mPFC-STN 
connectivity predicted adjustment of decision-thresholds and whether this relationship differed between 
low and high levels of cautiousness. However, connectivity parameters are more robust when averaged 
across trials compared to single-trial parameter estimates. Therefore, we computed estimates of inter-
site-phase-clustering (IPC), a phase-based measure of connectivity, between FCz and STN for each 
subject and task and tested whether this measure predicted inter-individual differences in decision-
thresholds. We only analyzed IPC between FCz and STN, because our previous studies have shown 
that task-related changes in cortico-STN connectivity were specific for the FCz-STN connection and 
were not observed between Pz and STN [S2, S3]. Please note that while we cannot discount more 
lateral prefrontal areas contributing to the signal at FCz due to the limited coverage in this study, 
previous studies have provided converging evidences that conflict-related LFO at FCz are generated in 
the mPFC [S5, S9, S16]. IPC was used as a measure of the extent to which oscillations in the mPFC 
and STN were phase-locked before the response [S2]. Analysis was done separately for task A and task 
B. Raw data were band-pass filtered between 2 and 8 Hz, and power and phase were computed for each 
STN channel and the FCz recording using the Hilbert transform. Then the magnitude of the average 



phase difference between the STN-LFP and EEG signal were calculated at each time point, averaged 
across trials and a sliding window (1.6 s) was applied for integrating over time [S2]. For specifically 
computing the pre-response change in IPC values were averaged across the time window from -3 to 0 
and divided by the mean peri-response (-5 to + 2s) value. This was done for each STN-channel and 
FCz recording separately and then averaged across STN channels for each participant resulting in one 
IPC value for each patient and task, which was used for regression analyses.  

In order to test whether inter-individual differences in modulation of IPC between FCz and 
STN predicted differences in adjustments of decision thresholds we applied linear regression analyses. 
We used the difference in FCz-STN IPC between task B and task A (positive values indicating 
increased phase coupling) as predictor and the corresponding change in threshold estimates derived 
from the NHDDM as dependent variable. Since elevated decision-thresholds are thought to improve 
the ability to control erroneous responses, a second regression with the same predictor was conducted 
using the change in accuracy during trials with an initial bidirectional coherence (see results) as 
dependent variable. To account for possible confounding effects of differences in drift rate we 
additionally repeated these regression analyses partialing out drift rate estimates (partial regression). 
Note that we did not use the parameter estimates from the HDDM, because the hierarchical design 
violates the assumption of independence of observations. Prior to conducting regression analyses we 
ensured that assumptions of linear regression were not violated including independence of 
observations, lack of outliers (> 3*SD), and approximate normal distribution of residuals. The 
significance threshold for was set to 0.05 two-tailed. 
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